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𝑒𝑖𝑗
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𝑞𝑟,𝑠
𝑚,𝑒,𝑡
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𝑞𝑟,𝑠
𝑒,𝑡
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𝛿𝑘,𝑖,𝑗,𝑟,𝑠
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Γ𝑡:  Uncertainty budget in period 𝑡 
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𝜁𝑖𝑗
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pair 𝑤 at period 𝑡 
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LIST OF COMMONLY USED TERMS 

Transportation 

decision-maker 

A road agency that owns the roadway infrastructure. This agency is 

responsible for constructing electric charging facilities. In some 

cases, charging facility types are provided by a private-sector entity 

through lease, through design-build-operate contracting, or as 

infrastructure owned/operated independently of the road network. In 

such cases, the transportation decision-maker is the road agency that 

makes the investment decisions in conjunction with the private-

sector entity. 

EV charging 

facility planning 

Long-term decision-making on electric charging infrastructure, 

regarding location, year of installation/construction, and charging 

capacity.  

Traffic network 

user equilibrium 

Users of a congested road network, seeking to determine their travel 

paths of minimal cost from their origins to their respective 

destinations, choose their most convenient path selfishly. At 

equilibrium, the number of trips between an origin and a destination 

equals the travel demand given by the market price (i.e., the travel 

time for the trips), and all users sharing the same origin and 

destination experience the same travel time. 

Dynamic charging Charging an EV while it is moving. 

Charging station Equipment that connects an EV to a source of electricity to recharge 

it using a connector (cable). 

Charging station 

capacity  

Number of travelers that can use the EV charging station per unit of 

time. 

EV driving range  The estimated distance an EV can drive at a given quantity of 

battery level. 

EV charging 

facility method 

Static or dynamic charging.  

Static charging  A method of charging an EV that requires the EV to be still.  

Wireless charging 

lane  

Equipment that recharges an EV without a connector (cable) while 

the EV is moving.  

Market penetration  Measure of how many EVs/ICEVs are being purchased by travelers. 
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ABSTRACT 

The rising demand for EVs, motivated by their environmental benefits, is generating increased 

need for EV charging infrastructure. Also, it has been recognized that the adequacy of such 

infrastructure helps promote EV use. Therefore, to facilitate EV adoption, governments seek 

guidance on continued investments in EV charging infrastructure development. The high cost of 

these investments motivates governments to seek optimal decisions on EV-related investments 

including EV charging infrastructure, and such decisions include locations, capacities, and 

deployment scheduling of such infrastructure. Additionally, uncertainties in travel demand 

prediction and EV driving range constraints need to be considered in EV infrastructure investment 

planning. To help address these questions, this thesis developed a framework to establish optimal 

schedules and locations for new charging stations and for decommissioning gasoline refueling 

stations for any given network over a long-term planning horizon, considering uncertainties in 

travel demand forecasts and EV driving-range heterogeneity. To address the uncertainties, the 

proposed framework is formulated as a robust mathematical model that minimizes the worst-case 

total system travel cost and the total penalty for unused charging station capacity. This study uses 

an adaption of the cutting-plane method to solve the proposed model. In the numerical analyses, 

the performance of the robust framework and its deterministic counterpart are compared. The 

results show that the optimal robust plan outperforms the deterministic plan by yielding savings in 

the costs of travel and electricity charging. The thesis also investigates the effects of investment 

budget levels of robust planning. The numerical results throw light on the relationships between 

higher investment levels and electric charging station deployment levels and consequently, the 

savings in travel costs and impacts on unused charging capacity. The outcomes of this thesis can 

help road agencies and related private sector entities enhance preparations towards infrastructure 

investments to support electric charging stations in an efficient manner. 
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 INTRODUCTION 

1.1 Background 

Global concerns associated with the environment, climate change, and energy security continue to 

motivate the transition from fossil fuel vehicles (also referred to as internal combustion engine 

vehicles; ICEV) to other fuel types. Of the various types of alternative fuel vehicles, electric 

vehicles (EVs) have been proven to be a viable option to replace ICEVs. 

To support the ICEV–EV transition, governments and automakers globally continue to make 

efforts, through policy and design, to increase the EV market share. For example, the United 

Kingdom and France seek to end ICEV sales by 2040 (Racherla & Waight, 2018). Despite global 

efforts, the current BEV market share is still limited worldwide. For example, according to recent 

data, the EV market share is less than 2% in the United States, even though several incentive 

programs to promote EVs have been implemented (Alternative Fuels Data Center, 2022; Highway 

Statistics Series, 2022). However, the number of EV sales is growing. It is reported that in the third 

quarter of 2023, total sales of EVs rose to around 7.9% of the brand-new vehicle market in the US 

(CarEdge, 2023). 

The lack of electric charging stations is well recognized as one of the barriers to EV adoption 

in the US (Indiana Department of Transportation, 2022; Michigan Department of Transportation, 

2022; New York Department of Transportation, 2022; Texas Department of Transportation, 2022). 

Researchers have found that in addition to initiatives including enhancements to battery capacity, 

reduction of recharging time, and increase in time-to-depletion, the provision of adequate electric 

charging stations helps reduce the driving range anxiety of EV users and ultimately promotes the 

EV penetration rate in the US (Cihat Onat et al., 2018; Coffman et al., 2016; Desai et al., 2021; 

Fauble et al., 2022; Funke et al., 2019; Huang & Kockelman, 2020). Based on the ongoing efforts 

in EV adaption, it is expected that the share of EVs in the sales market will grow over time and 

jump to around 30% in 2023 (EVAdoption, 2023). Figure 1.1 shows a projection of the total sales 

of EVs in the US market over the next 10 years. 
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Figure 1.1. EV sales share prediction in US market (EVAdoption, 2023) 

Franke and Krems (2013) argued that unless public authorities and private entities provide 

adequate charging stations to satisfy EV charging demand, customers will not be willing to 

purchase EVs. Due to the importance of charging stations, the US government recently provided 

a $5-billion budget for building EV charging infrastructure across the nation’s highway network 

(FHWA, 2022). 

Such promotion of EVs is considered urgent in the current era for at least two reasons. First, 

the reduction of greenhouse gases is a major goal of the Infrastructure Investment and Jobs Act 

(IIJA; Public Law 117-58), an unprecedented piece of transportation legislation signed by 

President Biden in 2021. That legislation specifically targets climate change and therefore requires 

the Federal Energy Regulatory Commission to require each state to consider measures to promote 

greater transportation electrification, including the promotion of EV charging and improvement of 

the customer experience with EV charging. With their zero-emissions feature, EVs are more 

environmentally friendly and pose less threat to the climate and therefore are of great interest to 

both public agencies and road users concerned with their environmental impact (Gardner et al., 

2013). Second, the shift from gasoline to electric propulsion is part of the broader national goal of 

energy security, an issue that has gained prominence in the wake of the Russia-Ukraine war.  

Similar to all infrastructure systems, the development of EV charging infrastructure must 

balance investment level and usage. On the one hand, inadequate charging stations will cause 

delays and frustration for EV users; on the other hand, an excessive number of stations will lead 
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to excess idle time, underutilization of the stations, and, ultimately, a waste of resources. 

Constructing adequate electric stations at well-chosen locations will decrease driving range anxiety 

and, therefore, is paramount to facilitating EV promotion (Cihat Onat et al., 2018; Coffman et al., 

2016; Desai et al., 2021; Fauble et al., 2022; Funke et al., 2019; F. Guo et al., 2018; Huang and 

Kockelman, 2020). From a broader perspective of infrastructure management, urban infrastructure 

investment planning to promote EVs should first ensure that adequate levels of service are 

consistently maintained for the customers (Kielhauser et al., 2017) (in the context of this thesis, 

the customers are the EV users, and level of service refers to range anxiety). Second, it should 

consider uncertainty and risk in the investment analysis inputs (Kielhauser and Adey, 2016).   

1.2 Electric Vehicle Types 

Different types of EVs have been introduced in the vehicle manufacturing industry. These EVs 

differ mainly based on electricity storage technology, electric recharging type, and propulsion 

force source. In this subsection, EV types and their important characteristics are introduced:  

• Battery electric vehicles (BEVs): There is no internal combustion engine in BEVs, and 

BEVs do not use any sort of liquid fuel. Therefore, BEVs are propelled only by electricity. 

Different BEVs have different driving ranges that range from approximately 100 to 300 

miles (Das et al., 2020; Sanguesa et al., 2021). 

• Plug-in hybrid electric vehicles (PHEVs): This type of EV takes advantage of the hybrid 

propulsion mechanism of an internal combustion engine and electricity power. PHEVs 

can be recharged by available electricity charging facilities (Das et al., 2020; Sanguesa et 

al., 2021). 

• Hybrid electric vehicles (HEVs): HEVs have the same propulsion mechanism as PHEVs: 

a combination of a conventional internal engine and electricity power. However, HEVs are 

different from PHEVs regarding the battery charging process. HEVs' batteries are not 

recharged through available electricity charging facilities. Instead, the batteries in HEVs 

are charged by the power generated by the internal combustion engine. For example, some 

HEVs are able to generate electricity during braking (Das et al., 2020; Sanguesa et al., 

2021). 
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• Fuel cell electric vehicles (FCEVs): FCEVs burn compressed hydrogen to generate energy, 

and the generated energy is further converted to electricity. Water is the only material 

produced as a result of this process. FCEVs cannot be charged by currently available 

charging facilities (Das et al., 2020; Sanguesa et al., 2021). 

• Extended-range electric vehicles (ER-EVs): ER-EVs are similar to BEVs; however, they 

are equipped with combustion engines used for battery charging. More specifically, the 

combustion engine does not generate any propulsion power and is not connected to the 

wheels (unlike HEVs and PHEVs, which use internal combustion engines to generate 

propulsion power too) (Das et al., 2020; Sanguesa et al., 2021). 

1.3 Electric Charging Facilities 

Three mechanisms for EV charging have been discussed in the literature: (i) static charging (using 

charging stations), (ii) inductive/wireless charging (Chen et al., 2016), and (iii) battery swapping 

(Adler et al., 2016). In the following, static and wireless charging are introduced in more detail. 

Based on the power level of the charging equipment, the static charging method can be 

classified further into three levels. Level 1 charges EVs using 120-volt AC outlets, which is the 

lowest available voltage level in residential and business buildings in the US. So, level 1 is suitable 

for residential locations. Level 1 is a cheapest charging facility and can be set up at residential 

locations without any further required infrastructure. As level 1 provides a small amount of power, 

the charging duration is relatively long and can reach 20 hours (Morrow et al., 2008; Khalid et al., 

2021; Kakkar et al., 2022). Level 2 provides a voltage of 240 volts for commercial AC electrical 

services. Due to the higher power provided, users can charge their EVs in a shorter time (around a 

few hours). Level 2 is suitable for public parking or residential buildings (Morrow et al., 2008; 

Khalid et al., 2021; Kakkar et al., 2022). Level 3 uses 480-volt AC power service and is referred 

to as “DC fast charging.” Level 3 is suitable for both public and commercial applications and is 

similar to a gas service station. The charging duration with level 3 charging is less than one hour 

(Morrow et al., 2008; Khalid et al., 2021; Kakkar et al., 2022). 

Wireless charging takes advantage of electromagnetic fields to provide conductive 

charging for EVs. Through this method, EV users can charge EVs wirelessly, without any cable 

connection. Three types of wireless charging have been developed. The first is stationary wireless 
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charging, which provides conductive charging at a static location (Das et al., 2020). The second is 

dynamic wireless charging, which enables EV users to charge their vehicles while they are driving. 

Therefore, they do not need stop at any charging stations (Das et al., 2020). The last type of 

wireless charging is quasi-dynamic wireless charging. With this technology, EVs can still charge 

in motion but at a slower speed than dynamic wireless charging (Das et al., 2020). 

1.4 Problem Statement  

There is a need to determine a model for the optimal location of level-3 electric charging stations 

in order to satisfy the charging demand of travelers for intercity trips during the transition period 

on the path toward full EV fleet market share. Due to their fast-charging technology, these types 

of EV charging stations are suitable for rural networks. Therefore, travelers can charge their EVs 

in a few minutes and continue their journeys. In addition to prospective new locations for the 

construction of electric charging stations, current gasoline (including diesel) refueling stations 

serve as candidate locations for installing EV charging stations. However, it is expected that ICEVs 

(which patronize gasoline refueling stations) will continue to constitute a major part of the roadway 

traffic fleet during most of the transition period. Therefore, their refueling needs will have to be 

addressed. As the market share of ICEVs decreases during the transition period, an increasing 

number of gasoline refueling stations will experience low demand and ultimately become 

candidates for decommissioning or repurposing as EV charging stations. In this study, therefore, 

it is assumed that refueling stations are decommissioned only when their demand falls below a 

certain threshold. Moreover, there is great variability in the driving ranges across the different EV 

classes and across different manufacturers. For example, the driving ranges of the Nissan Leaf and 

Tesla Model X are approximately 150 and 300 miles, respectively (Insideevs, 2018). As such, this 

study accounts for the driving range heterogeneity of EVs. 

In practice, the task of locating EV charging infrastructure on a road network has been 

identified as a constituent aspect of the strategic plans of service providers and governments over 

long planning horizons. Due to the long-term horizon that is typical of agency strategic plans, the 

service provider needs to carry out a strategic network design that accommodates EV charging 

demand. Such demand is influenced by the EV adoption rate and the driving behavior of travelers. 

Over the next few decades, the EV adoption rate is generally expected to increase, but the rate of 
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increase is uncertain due to factors including initial price sensitivity, energy cost, range reliability, 

and charging infrastructure availability (Liu & Lin, 2016). Further, fast-growing technological 

advancements and disruptive technologies, including electric automated vehicles, are expected to 

exacerbate the uncertainty in travel demand and driving patterns over the next few decades. Given 

the uncertainty in the EV adoption rate and driving behavior, it can be argued that EV charging 

demand can also be expected to be highly uncertain. 

1.5 Problem Objectives 

This study seeks to duly and explicitly consider the uncertainty in EV charging demand over a 

long-term planning horizon (that is, on the order of several years) to locate EV charging stations 

to serve intercity travel. As stated earlier, the uncertainty in electric charging demand can be 

attributed to uncertainty in travel demand forecasts over a long-term planning horizon. In practice, 

there is inherent uncertainty in forecasting travel demand over a long-term planning horizon, and 

the accuracy of travel demand forecasts declines with the length of the planning horizon. In other 

words, near-term travel demand forecasts are more accurate or reliable compared to medium- or 

long-term forecasts. This demand uncertainty could be attributed to changes in land use or 

economic and demographic characteristics. However, this has not been addressed in the context of 

EV charging station location and therefore represents another gap in the literature. In mathematical 

programming, there are two methods to address such uncertainty. The first, stochastic 

programming, assumes different probabilities of occurrence for different scenarios (Dantzig, 1955). 

However, estimating this probability distribution is difficult in practice. The second method 

proposes the concept of a robust approach that optimizes the system against the worst-case 

scenario while circumventing the need to estimate the probabilities of different scenarios 

(Bertsimas & Sim, 2003). This has been applied previously for network design with demand 

uncertainty (Lou et al., 2009). In this study, the second method is adopted as it seeks to develop a 

robust design of EV charging station locations under travel demand uncertainty. This study 

formulates this as a multiobjective optimization problem that seeks to reduce the maximum total 

system travel time and the costs associated with unused charging station capacity over a long 

planning horizon.  



 

 

21 

In summary, the objectives of this study in relation to the literature are as follows: This study 

seeks to develop a robust design for a network of electric charging stations to address the 

uncertainty of travelers' refueling and electric charging demands. The study also seeks to develop 

a framework that prepares the charging infrastructure during the transition stage by gradually 

decommissioning existing refueling stations in the context of intercity trips. The third contribution 

is the consideration of the driving range heterogeneity of EV batteries. 

1.6 Scope of the Study 

This thesis considers electric charging station planning from the perspective of two key 

stakeholders: the owner (an urban road agency) and EV users. As Adey (2018) pointed out, the 

management of any infrastructure should address effectiveness and efficiency goals from the 

perspectives of the key stakeholders. In this regard, the urban road agency, a key stakeholder in 

the analysis of this thesis, provides the investment resources for deploying the electric charging 

stations. The objectives of this stakeholder and of the EV users include effectiveness in terms of 

and efficiency in terms of EV facility deployment expenditure, EV users’ travel-time cost, EV 

charging station capacity underutilization, and fees paid by the EV users. The electric charging 

stations to be deployed are Level 3 fast charging and are open to all EV users without any 

restrictions. In its investment planning framework, this thesis does not present or capture a demand 

prediction model. 

1.7 Organization of the Thesis 

The remaining sections are structured as follows: Section 2 presents a literature review on EV 

charging station planning. Next, the proposed methodology and solution algorithm are introduced 

in Section 3. Section 4 discusses the numerical experiments that compare the performances of 

robust and deterministic designs of electric charging station locations under travel demand 

uncertainty forecasts. Finally, the study’s insights and concluding remarks are provided in Section 

5.  

Most parts of this thesis are reprinted from the article Pourgholamali et al. (2023) with 

permission from the Journal of Infrastructure Systems by the American Society of Civil Engineers. 
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 LITERATURE REVIEW 

2.1 Introduction 

EV charging facilities supply electrical energy for charging EVs, and, therefore, the operation of 

EVs depends on them. It is important to make effective decisions on constructing new facilities to 

promote EV adoption. These decisions involve many aspects of EV charging facilities, such as the 

types of charging facilities, their locations, and their charging levels. There are three levels of EV 

charging facilities: level 1, level 2, and level 3. These levels of EV charging facilities are mainly 

different in the output electricity power provided. In this regard, levels 1 and 2 are known as slow 

charging, and level 3 is called fast charging. Some studies have focused on slow EV charging 

facilities (i.e., Frade et al., 2011; Jia et al., 2014). For example, Frade et al. (2011) proposed a 

model for locating slow-charging facilities to maximize demand coverage while keeping the 

service level within an acceptable range. The majority of the studies in the literature have focused 

on fast-charging facility planning (i.e., Miralinaghi, Keskin, et al., 2016; Amjad et al., 2018; 

Domínguez-Navarro et al., 2019; Kchaou-Boujelben and Gicquel, 2020; Jordan et al., 2022; 

Tungom et al., 2023). As the focus of this study is the locating of charging stations, this chapter 

includes a literature review on electric charging facility locating problems. First, a brief overview 

of different levels of electric charging stations is presented. Next, the studies on fast (or level 3) 

electric charging stations are reviewed in two subsections: deterministic and uncertain demand 

assumptions. And last, a review of wireless electric charging lanes is presented. 

2.2 Electric Charging Location Problems 

There is an extensive body of research on EV charging station planning. These studies have 

covered different aspects, including charging technologies (Brenna et al., 2020; Fisher et al., 2014; 

Shevchenko et al., 2019); travelers’ behaviors and preferences in electrification (Y. Guo et al., 

2021, 2022); and optimal charging station configuration (Bai et al., 2019; Kchaou-Boujelben & 

Gicquel, 2020; Kınay et al., 2021; Yıldız et al., 2019). This study relates to only the past studies 

on optimal charging station planning, which can be classified into two groups based on EV 

charging demand assumptions: deterministic and uncertain (stochastic). 
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2.2.1 Deterministic Demand  

The first group deals with locating stations under the assumption of deterministic refueling demand. 

Zheng et al. (2017) determined the optimal locations of EV charging stations to minimize the total 

system travel time and electricity consumption of travelers. Arslan and Karaşan (2016) developed 

a mixed-integer program for the EV charging station location problem, where the goal of the road 

infrastructure agency is to maximize the distance traveled by EVs. They solved the problem by 

using the Benders decomposition technique with Pareto-optimal cut implementations, which 

significantly reduced the computational time. He et al. (2018) proposed a bi-level framework for 

EV charging stations. The goal was to maximize the flow usage of the charging stations in the 

upper-level part. Anjos et al. (2020) focused on the interaction of EV adaption and the availability 

of charging stations over a long-term planning horizon. In this regard, they proposed a mixed-

integer linear program model to determine the optimal construction of EV charging stations by 

maximizing the number of EVs in the network. They presented a rolling-horizon-based heuristic 

to solve the problem. Bai et al. (2019) studied the EV charging station location problem under the 

circumstances of a low EV penetration rate in the network. They used a vehicle’s GPS dataset to 

identify some potential charging station locations. Based on the identified potential locations, the 

optimal charging station locations were determined through a bi-level framework that minimized 

the construction cost and maximized the electric charging service quality. To solve the presented 

bi-level framework, a hybrid algorithm combining non-dominated sorting genetic algorithm II 

(NGSA-II) and neighborhood search was applied. Kınay et al. (2021) studied both the optimal 

design of charging stations and the optimal routing of EVs. In this regard, two different problems 

were presented. The first sought to minimize the construction cost of charging stations and the 

total en-route recharging of EVs. The second model only minimized the total en-route charging of 

EVs. The authors applied a Bender decomposition algorithm to solve the problems. To support 

intercity trips for EVs, Fakhrmoosavi et al. (2021) studied the optimal charging station planning 

within the state of Michigan. The authors determined the optimal charging station configuration 

that minimized construction costs and travelers’ delays. Khaksari et al. (2021) studied the optimal 

capacity planning of electric charging stations by proposing a mixed-integer program that 

minimized the construction cost of the charging stations. Moreover, their mixed-integer program 

ensured that the quality of the electric charging service for EVs, in terms of the probability of delay 

in charging complementation, was maintained above specific levels. Jordan et al. (2022) 
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incorporated real datasets of an urban area into a multi-objective optimization framework to select 

the best locations for electric charging stations. In this framework, they tried to maximize the utility 

coverage of the charging stations while minimizing their installation costs. Utility coverage was 

defined as the population, traffic, and activities covered by charging stations (Jordan et al., 2022). 

In another study, Xu et al. (2022) proposed a user-based location framework to maximize EV-user 

satisfaction with their charging experience (Xu et al., 2022). To improve the accuracy of demand 

prediction in long-term planning, Tungom et al. (2023) included a time-series linear regression in 

the EV charging station framework. The demand prediction stage helped to overcome the demand 

uncertainties in long-term planning. They proposed a hierarchical optimization approach to 

minimize the mismatch between demand-supply and investment costs while maximizing the 

quality of service for electric charging station users (Tungom et al., 2023). 

2.2.2 Stochastic Demand 

The second group of studies deals with uncertainty in both demand and supply (e.g., link capacity) 

of a traffic network. Sathaye and Kelley (2013) proposed a continuous optimization approach for 

constructing electric charging stations along highway corridors to minimize the distance traveled 

by EVs to recharge at charging stations, subject to a budget constraint. Hosseini and MirHassani 

(2015) developed a multi-period, two-stage decision framework to locate permanent and portable 

EV charging facilities. The portable facilities can be relocated across periods. In this framework, 

the road infrastructure agency determines the optimal locations of charging stations given the 

uncertainty in path flows on the traffic network. The present paper addresses the uncertainty of the 

recharging demand of travelers during their intercity trips and, therefore, can be placed in the 

second group of studies. Yıldız et al. (2019) studied the optimal configuration of electric charging 

stations that minimized the construction cost of electric charging stations, accounting for demand 

uncertainty in the optimal charging station planning and adopting a scenario-based approach to 

model such uncertainty. Kadri et al. (2020) proposed an optimization problem to maximize the 

expected served EV flows over a long-term planning horizon. The researchers incorporated the 

uncertainties about the electric recharging demand of EVs into the charging station planning and 

adopted a multi-stage stochastic integer programming approach based on a scenario tree to 

represent recharging demand uncertainty. Kchaou-Boujelben and Gicquel (2020) focused on 
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driving range uncertainty in the optimal planning of electric charging stations. More specifically, 

they captured the uncertainties in the energy consumption of EVs and the energy availability of 

EV batteries. Liu et al. (2023) considered the uncertainties in electricity power output in bus 

electric charging station planning. They proposed a two-stage stochastic programming formulation 

that used a sample average approximation to capture the uncertainty of electricity power outputs. 

The proposed formulation tried to minimize different objectives like infrastructure investment, 

recharging costs, emissions costs, vehicle operation, and battery purchase. They discussed the 

tradeoff between objectives such as infrastructure investment and emission costs (Liu et al., 2023). 

2.3 Wireless Electric Charging Lanes 

Wireless electric charging lanes (WCL) enable EVs to charge their batteries while in motion. 

Wireless charging offers EVs a potentially unlimited driving range as long as the vehicle is 

operating in the charging lane. However, installing wireless electric charging lanes is challenging, 

as it is expensive and impacts traffic congestion. Therefore, a body of literature has focused on 

deploying optimal wireless electric charging lanes on road networks. In this subsection, some of 

the efforts that have been made to locate the wireless electric charging lanes are reviewed. 

Chen et al. (2017) investigated the optimal deployment of charging stations and wireless 

charging lanes along a long traffic corridor to serve the electricity charging needs of EVs. They 

proposed a choice equilibrium model to capture the charging facility choices of EV drivers. Their 

model assumes EV drivers try to minimize their driving time, charging fees, charging time, and 

equipment costs (Z. Chen et al., 2017). Mubarak et al. (2021) proposed a framework for the optimal 

wireless charging lanes to serve the charging demand with minimum investment cost. Their 

proposed framework aimed to strategically deploy WCLs in the network in such a way that no EV 

runs out of energy before reaching its destination (Mubarak et al., 2021). In another study, Tran et 

al. (2022) integrated the dynamic routing behavior of travelers into the wireless charging lane 

location problem (Tran et al., 2022). Majhi et al. (2022) proposed a mixed-integer optimization 

model for the optimal placement of wireless charging lane facilities on a large road. The proposed 

model considered parameters that impact EV drivers’ decision to charge their vehicles. They 

implemented the proposed model on a case study of the Auckland Highway using the data 

generated by a traffic simulation-based approach (Majhi et al., 2022). Du et al. (2022) proposed 
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an optimization approach to determine the optimal locations and lengths of wireless electric 

charging lanes (Du et al., 2022). Odeh et al. (2022) presented an optimal allocation process for 

planning the locations of WCL lanes within the city of Dubai, UAE. They chose a set of candidate 

wireless electric charging lanes based on collected traffic data from the city. Then, they conducted 

an energy analysis on the selected candidate links to pick the most energy-efficient links to deploy 

wireless electric charging lanes (Odeh et al., 2022). He et al. (2023) presented a multiobjective 

optimization framework to deploy the optimal number of wireless charging lanes in a network. 

The presented framework aimed to maximize saved charging time, minimize charging costs, and 

minimize the negative impact of wireless charging lanes on traffic. Elghanam et al. (2023) 

proposed an integration of TOPSIS (technique for order of preference by similarity to ideal 

solution) and goal programming to determine the locations of wireless charging lanes. The 

proposed framework aimed to provide a comprehensive decision-making framework (Elghanam 

et al., 2023). 
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Table 2.1. Literature summary 

 
Study Stochasticity  

Planning 

horizon 

Driving range 

heterogeneity 

Refueling stations 

Decommissioning 

W
ir

el
es

s 
ch

ar
g

in
g
 

Chen et al. (2017) Deterministic Single — — 

Mubarak et al. (2021) Deterministic Single — — 

Tran et al. (2022) Deterministic Single — — 

Majhi et al. (2022) Deterministic Single — — 

Du et al. (2022) Deterministic Single — — 

Odeh et al. (2022) Deterministic Single — — 

He et al. (2023) Deterministic Single — — 

Elghanam et al. 

(2023) 
Deterministic Single — — 

C
h
ar

g
in

g
 s

ta
ti

o
n
 

Sathaye and Kelley 

(2013) 

Stochastic 

(demand) 
Multiple — — 

Hosseini and 

MirHassani (2015) 

Stochastic 

(demand) 
Multiple — — 

Karaşan (2016) Deterministic Single — — 

Zheng et al. (2017) Deterministic Single — — 

He et al. (2018) Deterministic Single — — 

Bai et al. (2019) Deterministic Single — — 

Yıldız et al. (2019) 
Stochastic 

(demand) 
Multiple — — 

Anjos et al. (2020) Deterministic Multiple — — 

Kadri et al. (2020) 
Stochastic 

(demand) 
Multiple — — 

Kchaou-Boujelben & 

Gicquel (2020) 

Stochastic (driving 

range) 
Single Yes — 

Kınay et al. (2021) Deterministic Single — — 

Fakhrmoosavi et al. 

(2021) 
Deterministic Single — — 

Khaksari et al. (2021) Deterministic Single — — 

Jordan et al. (2022) Deterministic Single — — 

Xu et al. (2022) Deterministic Single — — 

Tungom et al. (2023) Deterministic Multiple — — 

Liu et al. (2023) 

Stochastic 

(electricity power 

output) 

Single — — 

This study  
Stochastic 

(demand) 
Multiple Yes Yes 
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2.4 Summary 

This chapter presents a review of the literature on electric charging facility planning. Table 2.1 

shows a summary of the reviewed studies in this chapter. The majority of the studies assume 

deterministic values for the main planning components (e.g., travel demand and electricity 

consumption) and focus on a single-period planning horizon. However, there are a few studies that 

attempt to incorporate stochasticity in charging facility planning (Sathaye and Kelley, 2013; 

Hosseini and MirHassani, 2015; Yıldız et al., 2019; Kadri et al., 2020; Kchaou-Boujelben and 

Gicquel, 2020; Liu et al., 2023). Besides, none of the studies in the literature considered the 

heterogeneity of EV driving range (except Kchaou-Boujelben and Gicquel, 2020, which focused 

on the stochasticity of EV driving range) and refueling station decommissioning in long-term 

planning for electric charging stations. Therefore, this thesis aims to address these gaps and present 

a more holistic framework for electric charging station planning by developing a long-term 

planning framework incorporating demand uncertainties, heterogenous EV driving range, and the 

decommissioning of under-utilized refueling stations. 
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 METHODOLOGY 

This chapter presents the methodology implemented in this thesis for a robust electric charging 

station deployment. First, the preliminary results of the proposed methodology are presented. Then, 

the proposed mathematical framework and the implemented solution algorithm are introduced.  

3.1 Preliminaries  

The presented methodology focuses on constructing level-3 charging stations on a rural road 

network. Hence, the effects of traffic congestion on travel time are neglected, and it is assumed 

that travelers experience free-flow travel time. Throughout this thesis, some other main 

assumptions are made. First, both ICEVs and EVs have limited driving range, and the driving 

range of ICEVs is higher than that of EVs. Next, ICEVs and EVs are fully refueled or recharged 

before departing from their origins. Travelers experience delays due to charging or refueling at 

corresponding stations. The refueling and charging stations have finite capacities and cannot serve 

more than their operational capacities. Also, travelers follow the user equilibrium (UE) principle 

in choosing their routes, minimizing their travel costs. Based on the increasing pattern of EV 

adaption, travel demand for EVs increases over the planning horizon. On the other hand, travel 

demand for ICEVs decreases.  

Let 𝐺 = (𝑁, 𝐴) represent the road network. The planning horizon is divided into 𝑇 periods, 

which comprise the total duration of the planning horizon (typically, several years). Let 𝜏 denote 

the set of periods. The mixed-traffic scenario consists of EVs with different driving ranges and 

ICEVs. Let 𝑀 denote the set of vehicle types with cardinality |𝑀| where class 1 denotes ICEVs. 

Let 𝑚 > 1 denote different classes of EVs with different driving ranges, where 𝑅𝑚,𝑡
 is the driving 

range of EVs of class 𝑚 in period 𝑡. The notations used in this study are introduced in the Notation 

section. 

This study assumes that charging and refueling stations are located on nodes or links 

(specifically, beside the links). Travelers experience a delay during recharging or refueling. To 

capture the impact of charging and refueling delays on travelers and the operational capacity of 

stations, the road network configuration is modified. For each node or link with a charging or 
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refueling station (either candidate or existing), a dummy node and certain dummy link(s) are 

included depending on the connection of the original node or link to other nodes in the road 

network. The set of dummy candidate nodes for charging stations is represented by �̅�. The set of 

dummy nodes with existing refueling and charging stations are denoted by �̿� and �̌�, respectively. 

�̌� is assumed to be a subset of �̅�. Let �̌� denote the set of dummy links.  

 

(a) electric charging station on a node 

 

 

(b) electric charging station on a link 

 

Figure 3.1.  Transformation of traffic network 

 

The network transformation is illustrated in Figure 3.1. Figure 3.1a represents the original 

network where the charging station is located on node 𝑗. To capture the impact of charging delay 

and the capacity of station 𝑗, dummy node 𝑗′ is included in the charging station (Figure 3.1a). Since 

node 𝑗 is connected to nodes 𝑖 and 𝑘, two dummy links, (𝑗’,𝑖) and (𝑗’,𝑘), are included. The delay 

of the dummy link, (𝑗, 𝑗′), �̂�
𝑗,𝑗′
𝑚,𝑡

, is equal to the charging delay of EV travelers. The length of the 
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dummy link is set to zero to ensure that it does not impact the driving range. Travelers who traverse 

through link (𝑗, 𝑗′) for recharging can continue their trips by using links (𝑗′, 𝑖), and (𝑗′, 𝑘) as they 

are identical to the links (𝑗, 𝑖), and (𝑗, 𝑘), respectively. Similarly, a dummy node 𝑗′ is added to the 

network to capture the charging or refueling delay when a charging or refueling station is located 

at the link (Figure 3.1b). The dummy node 𝑗′ is connected to nodes 𝑖 and 𝑗 by dummy links that 

have delays equal to the charge or refuel delays of EV and ICEV travelers, respectively. If travelers 

do not need to charge or refuel, they do not need to traverse through dummy links and use only the 

actual links of the network (links (𝑖, 𝑘) or (𝑘, 𝑖)). Besides, it is assumed that the refueling and 

charging stations serve travelers with finite operational capacities. The capacity of the newly 

constructed or existing charging stations is independent of the operational capacity of the refueling 

stations.  

3.2 Mathematical Modeling 

In practice, forecasts of travel demand are uncertain over a long-term planning horizon. This study 

assumes that it belongs to an uncertainty set. The travel demand uncertainty set for each vehicle 

class 𝑚 for each O-D pair (𝑟, 𝑠) in each period 𝑡 is denoted by 𝑍𝑟,𝑠
𝑚,𝑡

, in which 𝑧 = 1 represents the 

deterministic travel demand scenario that can be used for analysis without considering travel 

demand uncertainty. It can denote the peak hour for travel demand. Let 𝒑 denote the vector of the 

aforementioned binary variables, that is 𝒑 = {𝑝𝑟,𝑠
𝑚,𝑧,𝑡, ∀(𝑟, 𝑠) ∈ 𝑊, ∀𝑚 ∈ 𝑀, 𝑧 ∈ 𝑍𝑟,𝑠

𝑚,𝑡, ∀𝑡 ∈ 𝜏}. For 

each vehicle class 𝑚 traveling between O-D pair (𝑟, 𝑠) in period 𝑡, there is only one realized travel 

demand scenario (therefore ∑ 𝑝𝑟,𝑠
𝑚,𝑧,𝑡

𝑧∈𝑍𝑟,𝑠
𝑚,𝑡 = 1 ). Given these notations, the travel demand 

uncertainty set 𝑄 can be formulated as follows: 

𝑄 = {𝒒| ∑ 𝑞𝑟,𝑠
𝑚,𝑧,𝑡𝑝𝑟,𝑠

𝑚,𝑧,𝑡

𝑧∈𝑍𝑟,𝑠
𝑚,𝑡

= 𝑞𝑟,𝑠
𝑚,𝑡, ∑ 𝑝𝑟,𝑠

𝑚,𝑧,𝑡

𝑧∈𝑍𝑟,𝑠
𝑚,𝑡

= 1, 𝑝𝑟,𝑠
𝑚,𝑧,𝑡 ∈ {0,1}} 

(1)   

where 𝒒 = (𝑞𝑟,𝑠
𝑚,𝑧,𝑡, ∀(𝑟, 𝑠) ∈ 𝑊, ∀𝑚 ∈ 𝑀, 𝑧 ∈ 𝑍𝑟,𝑠

𝑚,𝑡, ∀𝑡 ∈ 𝜏)  denotes the set of potential travel 

demand vectors. In deriving the optimal strategy for charging and refueling stations, if the road 

infrastructure agency does not account for travel demand uncertainty and instead only incorporates 

a certain vector of travel demand (such as peak-hour travel demand), then the robust scheme is 

reduced to a conventional “deterministic” scheme. 
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The proposed robust mathematical program involves multiobjective optimization; 

therefore, the weights of total system travel time (Η1) and the total penalty of unused charging 

station capacity (Η2) are denoted by 𝜙1  and 𝜙2 , respectively. Ψ is defined as the penalty for 

unused charging station capacity. Let 𝛥𝑡 be a factor for calculating the present value of costs in 

period 𝑡 that reflects the interest rates through the long-term planning horizon. Then, 𝛥𝑡 is equal 

to 
1

(1+𝜋)𝑡−1
. Let 𝜅  denote the parameter that converts the travelers’ costs and unused charging 

station capacity from an hourly basis to the basis of each period duration (e.g., several days). The 

robust design of the charging network with refueling infrastructure can be formulated as the 

following min-max problem (MMP1): 

Upper-level model 

min
𝝋,𝜽

(𝑚𝑎𝑥
𝒑,𝒗

 ( 𝜙1 ∙ Η1 + 𝜙2 ∙ Η2)) (2)   

Η1 = ∑ 𝛥𝑡 ∙ 𝜅 ∙ 𝛽𝑡 ⋅ ( ∑ 𝜈𝑖,𝑗
𝑡 ∙ 𝑐𝑖,𝑗

𝑡

(𝑖,𝑗)∈𝐴𝑡∈𝜏

+ ∑ ∑ 𝑣𝑖,𝑗
𝑡 ∙ �̂�𝑖,𝑗

𝑚,𝑡

(𝑖,𝑗)∈�̌�𝑚∈𝑀

) 
(3)   

Η2 = ∑ Ψ ⋅ 𝛥𝑡 ∙ 𝜅 ⋅ ∑ ∑ (𝑛𝑗 − 𝜈𝑖,𝑗
𝑡 )

𝑖:(𝑖,𝑗)∈�̌�𝑗:(𝑖,𝑗)∈�̌�|𝑗∈�̅�𝑡∈𝜏

 
(4)   

𝜑𝑖
1 = 1 ∀𝑖 ∈ �̿� (5)   

𝜑𝑖
𝑡 ≤ 𝜑𝑖

𝑡−1 ∀𝑖 ∈ �̿�, ∀𝑡 ∈ 𝛤 (6)   

∑ 𝑘𝑖
𝑡  𝜃𝑖

1

𝑖∈�̅�

≤ 𝐵1 
 (7)    

∑𝑘𝑖
𝑡 (𝜃𝑖

𝑡 − 𝜃𝑖
𝑡−1)

𝑖∈�̅�

≤ 𝐵𝑡 ∀𝑡 ∈ 𝛤, 𝑡 > 1 (8)   

𝜃𝑖
𝑡 = 1 ∀𝑖 ∈ �̌�, ∀𝑡 ∈ 𝛤 (9)   

𝜃𝑖
𝑡 ≥ 𝜃𝑖

𝑡−1 ∀𝑖 ∈ �̅�, ∀𝑡 ∈ 𝛤 (10)   

ℎ̅𝑗 ∙ 𝜑𝑗
𝑡 ≤ 𝑣𝑖,𝑗

𝑡  ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ �̿�, ∀(𝑖, 𝑗) ∈ �̌�, ∀𝑡 ∈ 𝛤 (11)   

𝜈𝑖,𝑗
𝑡 ≤ 𝑛𝑗 ∙ 𝜑𝑗

𝑡 ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ �̿�, ∀(𝑖, 𝑗) ∈ �̌�, ∀𝑡 ∈ 𝛤 (12)   
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𝜈𝑖,𝑗
𝑡 ≤ 𝑛𝑗 ∙ 𝜃𝑗

𝑡 ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ �̅�, ∀(𝑖, 𝑗) ∈ �̌�, ∀𝑡 ∈ 𝛤 (13)   

𝜃𝑖
𝑡 ∈ {0,1} ∀𝑖 ∈ �̅�, ∀𝑡 ∈ 𝛤 (14)   

𝜑𝑖
𝑡 ∈ {0,1} ∀𝑖 ∈ �̿�, ∀𝑡 ∈ 𝛤 (15)   

Lower-level model 

𝑓𝑖𝑗
𝑤,𝑡,1 ∙ (𝑐𝑖𝑗

𝑡 + 𝜇𝑖
𝑤,𝑡,1 − 𝜇𝑗

𝑤,𝑡,1) = 0 ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑤, ∀𝑡 (16)   

𝑐𝑖𝑗
𝑡 + 𝜇𝑖

𝑤,𝑡,1 − 𝜇𝑗
𝑤,𝑡,1 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑤, ∀𝑡 (17)   

𝑓𝑖𝑗
𝑤,𝑡,𝑚 ∙ (𝑐𝑖𝑗

𝑡 + 𝜁𝑖𝑗
𝑤,𝑡,𝑚 + 𝜇𝑖

𝑤,𝑡,𝑚 − 𝜇𝑗
𝑤,𝑡,𝑚) = 0 ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑤, ∀𝑡, 𝑚 > 1 (18)   

𝑐𝑖𝑗
𝑡 + 𝜁𝑖𝑗

𝑤,𝑡,𝑚 + 𝜇𝑖
𝑤,𝑡,𝑚 − 𝜇𝑗

𝑤,𝑡,𝑚 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑤, ∀𝑡, 𝑚 > 1 (19)   

𝑓𝑖𝑗
𝑤,𝑡,𝑚 ≤ Λ 𝑒𝑖𝑗

𝑤,𝑡,𝑚
 ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑤, ∀𝑡, 𝑚 > 1 (20)   

𝜁𝑖𝑗
𝑤,𝑡,𝑚 ≤ Λ (1 − 𝑒𝑖𝑗

𝑤,𝑡,𝑚) ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑤, ∀𝑡, 𝑚 > 1 (21)   

𝜇𝑠
𝑤,𝑡,𝑚 = 0 ∀𝑤, ∀𝑠, ∀𝑡, ∀𝑚 (22)   

𝑣𝑖,𝑗
𝑡 = ∑ ∑ 𝑓𝑖𝑗

𝑤,𝑡,𝑚

𝑚∈𝑀𝑤∈𝑊

 ∀𝑡 (23)   

∑ 𝑓𝑗𝑖
𝑤,𝑡,𝑚

𝑗:(𝑗,𝑖)∈𝐴

− ∑ 𝑓𝑖𝑗
𝑤,𝑡,𝑚

𝑗:(𝑖,𝑗)∈𝐴

= 𝑞𝑖
𝑤,𝑡,𝑚

 ∀𝑤, ∀𝑖, ∀𝑡, ∀𝑚 (24)   

𝜁𝑖𝑗
𝑤,𝑡,𝑚 and 𝑓𝑖𝑗

𝑤,𝑡,𝑚 ≥ 0  ∀(𝑖, 𝑗), ∀𝑤, ∀𝑡, ∀𝑚 (25)   

The goal of the presented model is to minimize the worst-case sum of system travel time 

(Η1) and the total penalty due to unused charging station capacity (Η2; Equation (2)). Equation (3) 

calculates the total travel delay of ICEV and EV travelers. Equation (4) calculates the total unused 

electric charging stations and refueling stations. Constraints (5) ensure that refueling stations exist 

in the first period and can be used by ICEVs. Constraints (6) state that if the refueling station of 

node 𝑖 stops working in period 𝑡 − 1, then it cannot be patronized by ICEVs for the rest of the 

planning horizon. Constraints (7) and (8) ensure that the monetary budget for the construction of 

the new charging stations is satisfied in each period. Constraints (9) state that the existing charging 
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stations are available for charging throughout the entire planning horizon. Constraints (10) ensure 

that once a charging station is constructed in a period, it remains available for charging in 

subsequent periods. Constraints (11) ensure that the refueling station of node 𝑗 works in period 𝑡 

if its demand is greater than or equal to ℎ̅𝑗 . Constraints (12) are the capacity constraints of refueling 

stations, which state that the number of vehicles that refuel at node 𝑗 in period 𝑡 (i.e., traverse 

through the dummy link (𝑖, 𝑗)) is less than 𝑛𝑗  if the refueling station is available in that period. It 

also ensures that after removing the refueling station at node 𝑗, the refueling demand at that node 

becomes zero. Constraints (13) are identical to constraints (12) except that they apply to the 

charging stations, meaning that the number of vehicles that recharge at node 𝑗 in period 𝑡 is less 

than 𝑛𝑗  if the charging station located at node 𝑗  is available for charging in period 𝑡 , and 0 

otherwise. Constraints (14)–(15) state that 𝜃𝑖
𝑡 and 𝜑𝑖

𝑡 are binary variables. 

The second body of the model ((16)–(25)) addresses the route choice behavior of travelers. 

Constraints (16)–(17) are the UE conditions for ICEV users, which ensure that if ICEV users of 

each O-D pair use link (𝑖, 𝑗), it belongs to the path between that O-D pair with minimum travel 

cost. Similarly, constraints (18)–(19) are the UE conditions for EV users. Constraint (20) ensures 

that if link (𝑖, 𝑗) does not belong to the feasible path between an O-D pair, the flow of EVs is zero. 

Similarly, constraint (21) imposes an excessive travel cost on a link (𝑖, 𝑗) that is not a part of the 

feasible EV path. Constraint (22) indicates that travel time at the origin is equal to zero. Equation 

(23) calculates the total traffic flow of link (𝑖, 𝑗) in period 𝑡. Constraint (24) ensures demand 

conservation, and constraint (25) ensures the non-negativity of 𝜁𝑖𝑗
𝑤,𝑡,𝑚and 𝑓𝑖𝑗

𝑤,𝑡,𝑚
. 

An important component of the above formulation ((2)–(25)) is the feasible path of EVs 

(𝑒𝑖𝑗
𝑤,𝑚,𝑡

). Considering the heterogeneous driving range of ICEVs and EVs, the feasible paths of 

EVs (𝑒𝑖𝑗
𝑤,𝑚,𝑡

) are derived as a set of mixed-integer linear programs (equations (26)–(39)).  

𝑢𝑗
𝑤,𝑚,𝑡 ≥ 𝑢′

𝑖
𝑤,𝑚,𝑡

+ 𝐿𝑖𝑗 − Λ (1 − 𝑒𝑖𝑗
𝑤,𝑚,𝑡) ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑤, ∀𝑚, ∀𝑡, ∀𝑖, 𝑗 (26)   

𝑢𝑗
𝑤,𝑚,𝑡 ≤ 𝑢′

𝑖
𝑤,𝑚,𝑡

+ 𝐿𝑖𝑗 + Λ (1 − 𝑒𝑖𝑗
𝑤,𝑚,𝑡) ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑤, ∀𝑚, ∀𝑡, ∀𝑖, 𝑗 (27)   

𝑢𝑖
𝑤,𝑚,𝑡 ≤ 𝑅𝑚,𝑡

 ∀𝑡, ∀𝑤, ∀𝑚, ∀𝑖 (28)   
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𝑢′
𝑖
𝑤,𝑚,𝑡

≥ 𝑢𝑖
𝑤,𝑚,𝑡 − Λ 𝜃𝑖

𝑡 ∀𝑡, ∀𝑤, ∀𝑚 > 1, ∀𝑖 ∈ 𝑁 − (�̌� ∪ �̿�) (29)   

𝑢′
𝑖
𝑤,𝑚,𝑡

≤ 𝑢𝑖
𝑤,𝑚,𝑡 + Λ 𝜃𝑖

𝑡 ∀𝑡, ∀𝑤, ∀𝑚 > 1, ∀𝑖 ∈ 𝑁 − (�̌� ∪ �̿�) (30)   

𝑢′
𝑖
𝑤,𝑚,𝑡

≤ Λ (1 −𝜃𝑖
𝑡) ∀𝑡, ∀𝑤, ∀𝑚 > 1, ∀𝑖 ∈ �̅� (31)   

𝑢′
𝑖
𝑤,𝑚,𝑡

= 0 ∀𝑖 ∈ �̌�, ∀𝑚 > 1, ∀𝑡, ∀𝑤 (32)   

𝑢′
𝑖
𝑤,𝑚,𝑡

≤ Λ (1 −𝜑𝑗
𝑡) ∀𝑖 ∈ �̿�, ∀𝑚 = 1, ∀𝑡, ∀𝑤 (33)  

𝑢′
𝑠
𝑤,𝑚,𝑡

= 0 ∀𝑠|(𝑠, 𝑟) ∈ 𝑊, ∀𝑚, ∀𝑡, ∀𝑤 (34)   

𝑢𝑠
𝑤,𝑚,𝑡 = 0 ∀𝑠|(𝑠, 𝑟) ∈ 𝑊, ∀𝑚, ∀𝑡, ∀𝑤 (35)   

∑ 𝑓𝑗𝑖
𝑤,𝑡,𝑚

𝑤,𝑚>1,𝑗:(𝑗,𝑖)∈𝐴

≤�̅�𝑗  𝜃𝑖
𝑡 ∀𝑡, ∀𝑖 ∈ �̅� ∪ �̌� (36)   

∑ 𝑓𝑗𝑖
𝑤,𝑡,1 ≤�̿�𝑖𝜑𝑖

𝑡

𝑗,𝑤

 ∀𝑡, ∀𝑖 ∈ �̿� (37)   

𝑢′
𝑖
𝑤,𝑡

, 𝑢𝑖
𝑤,𝑡, 𝑔𝑖

𝑤,𝑡,𝑚, ℎ𝑖
𝑡 ≥ 0 ∀𝑡, ∀𝑤, ∀𝑖 (38)   

𝑒𝑖𝑗
𝑤,𝑡,𝑚 ∈ {0,1} ∀𝑡, ∀𝑤, ∀(𝑖, 𝑗) ∈ 𝐴 (39)   

Constraints (26) and (27) calculate the distance that travelers traveled from the last-visited 

refueling stations (for 𝑚 = 1) or charging station (for 𝑚 > 1) after visiting node 𝑗 and just before 

visiting node 𝑖. Constraints (28) ensure that the traveled distance of vehicles (𝑢𝑗
𝑤,𝑚,𝑡

) is less than 

the driving range in period 𝑡 (𝑅𝑚,𝑡
). Constraints (29) and (30) ensure that if a charging station is 

not located at node 𝑖 , the traveled distances from the last-visited charging station just before 

visiting node 𝑖 (𝑢𝑖
𝑤,𝑡

) and after visiting node 𝑖 (𝑢′
𝑖
𝑤,𝑡

) are equal. If a charging station is constructed 

at node 𝑖, then 𝑢′
𝑖
𝑤,𝑡

 is equal to zero (constraints (31)). This implies that the traveled distance is set 

to zero after visiting the constructed charging stations. Similarly, if there is a charging station at 

candidate node 𝑖 , then 𝑢′
𝑖
𝑤,𝑡

 is equal to zero (constraint (32)). Similarly, if a charging station 
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operates at node 𝑖, then 𝑢′
𝑖
𝑤,𝑡

 is equal to zero (constraint (33)). Constraints (34) and (35) ensure 

that (𝑢𝑖
𝑤,𝑡

) and (𝑢′
𝑖
𝑤,𝑡

) are zero at the origin of the trips. Constraint (36) calculates the total volume 

of EVs that recharge at station 𝑖 and ensures that this not exceed the capacity of that charging 

station. Constraint (37) ensures that the served ICEVs do not exceed the capacity of the refueling 

stations. Especially, it ensures that when a refueling station is decommissioned, it does not serve 

ICEVs anymore. Constraint (38) ensures the non-negativity of 𝑢′
𝑖
𝑤,𝑡

, 𝑢𝑖
𝑤,𝑡, 𝑔𝑖

𝑤,𝑡,𝑚
, and ℎ𝑖

𝑡. Finally, 

𝑒𝑖𝑗
𝑤,𝑡,𝑚

 is a binary variable set according to constraint (39). 

3.3 Solution Algorithm 

The proposed MMP1 (equations (2)–(39)) contains two types of binary variables and is classified 

as a mixed-integer problem. It cannot be solved in polynomial time and, therefore, is described as 

non-deterministic polynomial hard (NP-hard). Many solution algorithms are used to solve NO-

hard problems in the literature (Miralinaghi, et al., 2017a; Miralinaghi, et al., 2017b; 

Pourgholamali et al., 2023; Labi et al., 2023; Seilabi et al., 2022a; Seilabi et al., 2022b). This study 

uses the cutting-plane scheme to solve MMP1 (2)–(39) by addressing two subproblems during 

each iteration (Lou et al., 2009; Seilabi et al., 2023). The first subproblem determines the optimal 

timeline for locating new charging stations and decommissioning the existing refueling stations 

(equations (1)–(39)) based on a subset of the travel demand uncertainty set. The second 

subproblem generates a new worst-case travel demand scenario. To implement this scheme, first, 

MMP1 should be formulated as the following mixed-integer problem (MMP2): 

𝐿2 = min
𝝋,𝜽

(𝜔) (40)   

𝜔 ≥ 𝜙1 ∙ ∑ ∆𝑡 ∙ 𝛽𝑡 ∙ 𝜅 ∙ ( ∑ 𝑣𝑖,𝑗
𝑡,𝑞 ∙ 𝑐𝑖,𝑗

𝑡

(𝑖,𝑗)∈𝐴

+ ∑ ∑ 𝑣𝑖,𝑗
𝑡,𝑞 ∙ �̂�𝑖,𝑗

𝑡

(𝑖,𝑗)∈�̌�𝑚∈𝑀

)

𝑡∈𝜏

+ 

𝜙2 ∙ ∑ ∆𝑡 ∙ Ψ ∙ 𝜅 ∙ ( ∑ ∑ (𝑛𝑗 − 𝑣𝑖,𝑗
𝑡,𝑞)

𝑖:(𝑖,𝑗)∈�̌�𝑗:(𝑖,𝑗)∈�̌�|𝑗∈�̅�

)

𝑡∈𝜏

 

∀𝑞 ∈ 𝑄 

(41)   

𝜈𝑞 ∈ Ω(𝒒) ∀𝑞 ∈ 𝑄 (42)   
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where the superscript (∙)𝑞 denotes the variables that are associated with a specific travel demand 

uncertainty vector 𝑞 ∈ 𝑄. Although the number of feasible scenarios for the travel demand of each 

vehicle class 𝑚 of O-D pair (𝑟, 𝑠) in period 𝑡 is particularly small, the number of vectors in the 

travel demand uncertainty set (𝑄) is generally very large. In MMP2, equations (11)–(39), which 

present the UE conditions, need to be written for each 𝑞 ∈ 𝑄. To prevent presenting repetitive 

equations, equation (42) represents the equations (11)–(39) for each 𝑞 ∈ 𝑄 . Therefore, Ω(𝒒) 

represents the UE link flows for each 𝑞 ∈ 𝑄. Due to the tremendous increase in the number of 

constraints, the relaxed MMP2 is solved using a subset �̃� ⊆ 𝑄 that includes a restricted number of 

travel demand vectors. The idea of the cutting-plane scheme is to update the subset �̃� unless it is 

not possible to identify a travel demand vector that leads to a higher weighted summation of total 

travel cost and penalties of unused charging station capacity compared to the current solution (i.e., 

the worst-case travel demand scenario). Given the operating refueling and electric charging 

stations, the following mixed-integer problem (MMP3) updates the subset �̃�  

𝑚𝑎𝑥
𝒑

 ( 𝜙1 ∙ Η1 + 𝜙2 ∙ Η2) (43)   

∑ 𝑝𝑟,𝑠
𝑚,𝑧,𝑡

𝑧∈𝑍𝑟,𝑠
𝑚,𝑡

= 1 
(44)   

𝑝𝑟,𝑠
𝑚,𝑧,𝑡 ∈ {0,1} (45)   

and equations (3), (4), (11)–(13), (16)–(39). 

 Based on the developed subproblems, a solution algorithm consists of eight main steps. To 

begin, the feasible paths of ICEVs and EVs are found based on the available refueling and charging 

stations (Step 1). The feasible paths are used to capture the route choice of travelers. In Step 2, the 

uncertain travel demand set is initialized by selecting a travel demand set (or vector). In this step, 

the nominal travel demand is selected and added to the uncertain travel demand set. Next, an 

optimal plan for constructing new charging stations and decommissioning refueling stations is 

obtained by solving the MMP2 (Step 3). Based on the new optimal plan, the feasible routes for 

travelers are updated (Step 4). Then, MMP3 is solved to update the uncertain travel demand set 

(Step 5). In the next step, the termination condition is checked. Two termination conditions are 

considered in this study: the total number of iterations and not finding any further worst-case travel 

demand scenarios. If the conditions are met, the process stops and returns the latest optimal plan 
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(Step 8). If not, it goes to Step 7 and adds the solution of MMP3 to the worst-case travel demand 

scenario. Figure 3.2 presents a simplified flowchart of the implemented solution algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 1: Find all the feasible 
shortest paths 

Step 2: Select a travel 
demand scenario vector 

Step 3: Generate the robust 
refueling/charging station 
locations design 

Step 5: Generate the worst-
case travel demand scenario 

Step 6: Check the termination 
criteria. Terminate? 

Step 7: Include the derived travel demand 
scenario in the travel demand uncertainty 
subset 

Step 8: Stop 

Yes 

No Step 4: Update the feasible 
paths 

Figure 3.2. Flowchart of the implemented solution algorithm  
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 NUMERICAL EXPERIMENTS 

4.1 Case Study 

This section presents the results of numerical experiments using the well-known Sioux Falls city 

road network (Figure 4.1), which has 24 nodes and 76 links. The road agency seeks the optimal 

timeline for constructing new EV charging stations and decommissioning existing refueling 

stations over the planning horizon.  

 

 

Figure 4.1. Sioux Falls network of refueling and charging stations 

The horizon is assumed to be equal to 18 years, with 6 time periods of 3-year duration each. 

The characteristics of this network have been modified to better mimic intercity travel compared 

to the characteristics proposed by LeBlanc et al. (1975). The link characteristics (travel times and 

lengths) and the aggregate peak-hour travel demand of each origin-destination (O-D) pair in period 

1 are listed in Table 4.1 and Figure 4.2, respectively.  
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Figure 4.2. Aggregate travel demand for each origin-destination (O-D) pair in period 1 
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4.2 Problem Setting 

The travel demand uncertainty set for O-D pair 𝑤 and vehicle class 𝑚 in time period 𝑡 consists of 

four demand sets: (1) travel demand scenario at peak hour, (2) low travel demand scenario, (3) 

medium travel demand scenario, and (4) high travel demand scenario. Travel demand scenarios 2 

to 4 are derived by multiplying travel demand scenario 1, as the benchmark, with random 

parameters that are generated based on the uniform distribution. The domain of the low travel 

demand scenario is [0.95, 1] in period 1, while the lower bound decreases consistently during the 

transition horizon until it reaches [0.7, 1] in period 6. The domains of medium and high travel 

demand scenarios are [1, 1.05] and [1, 1.1] in period 1, respectively, while the upper bounds 

increase during the transition horizon until they reach [1, 1.3] and [1, 1.6] for the medium and high 

travel demand scenarios, respectively. The value of time (𝛽𝑡) is assumed to be equal to $20/hour 

in the first period (U.S. Department of Transportation, 2016). It is assumed that this value increases 

by $2 in each period and reaches $30/hour in period 6. The aggregate travel demand for each O-D 

pair is assumed to grow by 5% in each period. There are two classes of EVs with different driving 

ranges: 150 and 200 miles in period 1 for EV types 1 and 2, respectively. These ranges increase in 

each period to reach 200 and 250 miles in period 6 for EV types 1 and 2, respectively (Mazda 

USA, 2022; Nissan USA, 2022; Volvo Cars, 2022). The driving range of ICEVs is considered to 

be equal to 250 miles for all periods. The EV class market penetration starts at 2.5% of aggregate 

travel demand of each O-D pair in the first period and increases constantly until reaching 40% in 

period 6. On the other hand, the market penetration of ICEV vehicles starts at 95% and decreases 

to 20% in the last period. The proposed algorithm (Figure 3.2) was coded in the general algebraic 

modeling system (GAMS) using CPLEX solver. The results were obtained using a Core i7 

processor with a 2.6 GHz CPU and 8 GB RAM.  
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Table 4.1. Link characteristics of Sioux Falls network 

Link 

No. 
From To 

Travel Time 

(min) 

Length 

(mile) 

 
Link 

No. 
From To 

Travel 

Time 

(min) 

Length (mile) 

1 1 2 60.34 71.52  39 13 24 37.67 44.64 

2 1 3 43.94 52.08  40 14 11 44.75 53.04 

3 2 1 60.34 71.52  41 14 15 45.77 54.24 

4 2 6 52.35 62.04  42 14 23 43.03 51.00 

5 3 1 43.94 52.08  43 15 10 59.43 70.44 

6 3 4 43.64 51.72  44 15 14 45.77 54.24 

7 3 12 41.92 49.68  45 15 19 35.44 42.00 

8 4 3 43.64 51.72  46 15 22 35.44 42.00 

9 4 5 21.87 25.92  47 16 8 48.80 57.84 

10 4 11 65.41 77.52  48 16 10 45.56 54.00 

11 5 4 21.87 25.92  49 16 17 16.91 20.04 

12 5 6 42.22 50.04  50 16 18 27.24 32.28 

13 5 9 50.93 60.36  51 17 10 81.41 96.48 

14 6 2 52.35 62.04  52 17 16 16.91 20.04 

15 6 5 42.22 50.04  53 17 19 23.39 27.72 

16 6 8 21.97 26.04  54 18 7 22.07 26.16 

17 7 8 25.31 30.00  55 18 16 27.24 32.28 

18 7 18 22.07 26.16  56 18 20 45.16 53.52 

19 8 6 21.97 26.04  57 19 15 35.44 42.00 

20 8 7 25.31 30.00  58 19 17 23.39 27.72 

21 8 9 97.30 115.32  59 19 20 40.40 47.88 

22 8 16 48.80 57.84  60 20 18 45.16 53.52 

23 9 5 50.93 60.36  61 20 19 40.40 47.88 

24 9 8 97.30 115.32  62 20 21 57.92 68.64 

25 9 10 27.84 33.00  63 20 22 47.69 56.52 

26 10 9 27.84 33.00  64 21 20 57.92 68.64 

27 10 11 50.62 60.00  65 21 22 16.91 20.04 

28 10 15 59.43 70.44  66 21 24 33.31 39.48 

29 10 16 45.56 54.00  67 22 15 35.44 42.00 

30 10 17 81.41 96.48  68 22 20 47.69 56.52 

31 11 4 65.41 77.52  69 22 21 16.91 20.04 

32 11 10 50.62 60.00  70 22 23 40.50 48.00 

33 11 12 65.41 77.52  71 23 14 43.03 51.00 

34 11 14 44.75 53.04  72 23 22 40.50 48.00 

35 12 3 41.92 49.68  73 23 24 19.04 22.56 

36 12 11 65.41 77.52  74 24 13 37.67 44.64 

37 12 13 30.17 35.76  75 24 21 33.31 39.48 

38 13 12 30.17 35.76  76 24 23 19.04 22.56 
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It is assumed that the network has 10 existing refueling stations located at nodes 3, 5, 7, 

12, 17, 21, and 23 and at links (1,2), (10,11), and (18,20). There are also 5 existing charging 

stations at nodes 5, 12, 19, and 21 and at link (1,2). Figure 4.1 illustrates 13 candidate locations 

for constructing new charging stations, which are nodes 2, 3, 4, 7, 9, 13, 14, 15, 17, 18, and 23 and 

links (10,11) and (18,20). The construction costs of new charging stations are assumed to be 

identical for all candidate locations. This cost starts at $0.5 million in the first period, increases by 

$0.1 million in each period, and reaches $1 million in the sixth period. The construction budget 

for new charging stations in each period is equal to $1.5 million in periods 1 to 4 and equal to $1 

million for periods 5 and 6. The charging delay is assumed to be equal to 30 minutes in the first 

period for EVs (i.e., 𝑚 > 1) as the approximation for the delay of the current fast-charging stations 

(Mazda USA, 2022; Nissan USA, 2022; Volvo Cars, 2022). The charging delay is assumed to 

decrease during the planning horizon due to technological advancements and reach 10 minutes in 

period 6. For ICEVs (i.e., 𝑚 = 1), the refueling delay is assumed to be constant and equal to 5 

minutes during the planning horizon. The operational capacities (𝑛𝑗) of charging and refueling 

stations are 60 and 150 vehicles per hour, respectively. The penalty for the unused charging station 

capacity is assumed to be equal to $10 per hour. 

In this case study, equal weights for the two considered objective criteria in the objective 

function (i.e., 𝜙1 = 𝜙2 = 1) are assumed. The constant interest rate (𝜋) for each period during the 

entire planning horizon is assumed to be equal to 5 percent. Hence, 𝛥𝑡  is equal to 
1

1.05𝑡−1 . 

Furthermore, 𝜅 equals 26,280 (that is, 24 × 365 × 3) to convert the hourly-based costs to the basis 

of each period duration (i.e., 3 years). The conversion factor presents the system costs in a way 

that is more representative of real-world applications, and its value does not affect the analysis 

outcomes. For implementation, this factor could be adjusted to fit and represent the real-world 

conditions associated with those applications. Finally, it is assumed that up to five shortest paths 

can be utilized for each O-D pair and vehicle class in each period (𝑘 = 5). In the rest of this chapter, 

the performance of robust planning is investigated. To do this, the robust scheme and the 

deterministic scheme are compared (Section 4.3). Then, the impacts of the available budget for 

constructing charging stations on the robust framework are discussed (Section 4.4). 



 

 

44 

4.3 Comparison of the Robust and Deterministic Schemes 

In this section, the performance of robust planning is investigated. To do this, the optimal long-

term plan of the proposed robust framework, which is called the “robust scheme,” is compared to 

its counterpart, the “deterministic scheme.” The deterministic scheme is the optimal long-term 

plan of the proposed framework, except the only deterministic values of demand are assumed to 

be travel demand (therefore, the travel demand uncertainty set contains only one travel demand 

set, which is the deterministic travel demand). 

First, the obtained locations and decommissioning timelines under deterministic and robust 

schemes are compared. Figure 4.3 shows the optimal location of constructed charging stations and 

decommissioned refueling stations. Under the robust scheme, there are three additional charging 

stations compared to the deterministic scheme during the planning horizon. This is due to the 

higher conservatism of the road agencies, who consider the worst-case travel demand scenario in 

the optimal design, in robust scheme. Under the robust scheme, charging stations are constructed 

in the most congested areas of the network (nodes 7, 9, and 18) with higher demands expected for 

this area in the first period. With the exception of node 7, this result stands in contrast to the result 

from the deterministic scheme, which proposes to build the charging stations in the less congested 

areas of the region and on the borders of the network (nodes 2 and 13).  

Furthermore, both schemes suggest almost identical designs for decommissioning the 

existing refueling stations, except for period 5 (Table 4.2). Both schemes suggest decommissioning 

refueling stations located at node 23, link (10,11), node 3, and node 17 in periods 2, 3, 4, and 6. 

Under the deterministic scheme, the refueling station on node 12 must be decommissioned in 

period 5, while the robust scheme suggests decommissioning the refueling station located at link 

(18,20) in period 5. This similarity is due to the fact that the total operational capacity of refueling 

stations is significantly higher than the refueling demand, and considering the worst cases of travel 

demand vectors in the robust scheme compared to the deterministic scheme, does not make a 

significant difference in the list of existing refueling stations to be decommissioned under either 

scheme.
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Figure 4.3. Optimal locations of constructed charging and decommissioned refueling stations
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Table 4.2. Optimal decommissioning plan 

(a) Robust scheme 

Refueling station Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 

Node 23 
 

X 
    

Link (10,11) 
  

X 
   

Node 3 
   

X 
  

Link (18,20) 
    

X 
 

Node 17 
     

X 

 

(b) Deterministic scheme 

Refueling station Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 

Node 23 
 

X 
    

Link (10,11) 
  

X 
   

Node 3 
   

X 
  

Node 12 
    

X 
 

Node 17 
     

X 

 

Next, the performance of the deterministic and robust schemes under uncertainty in the 

long-term travel demand forecasts is investigated. To do this, three Monte Carlo simulations are 

implemented. In these analyses, 1,000 travel demand vectors for each simulation are generated 

based on the different distributions that use travel demand scenarios (1)–(4). The distributions for 

simulations 1 to 3 include (1) optimistically asymmetric distribution with higher occurrence 

probability (that is, 0.4) for low and peak-hour travel demand scenarios and lower occurrence 

probabilities for medium (0.15) and high (0.05) travel demand scenarios; (2) discrete uniform 

distribution with identical occurrence probability for each travel demand scenario (that is, 0.25); 

and (3) pessimistically asymmetric distribution with higher occurrence probability (that is, 0.4) for 

medium and high travel demand scenarios and lower occurrence probability for peak-hour (that is, 

0.15) and low (that is, 0.05) travel demand scenarios.  

The relative performances of the robust and deterministic schemes in each of the three 

simulations are compared based on the three measures: (i) travelers’ costs, (ii) charging costs of 
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EVs, and (iii) standard deviation of travelers’ costs (). “Travelers’ costs” refers to the monetized 

travel time experienced by travelers. The induced delay for EV travelers due to charging their EVs 

at charging stations is called the “charging cost of EVs.” Overall, travelers’ costs increase from 

simulation 1 to simulation 3 under both robust and deterministic schemes. This is due to the 

increase in travel demand from simulation 1 to simulation 3. Under simulations 1–3, the robust 

scheme reduces average travelers’ costs compared to the deterministic scheme. More specifically, 

the robust scheme outperforms the deterministic scheme in terms of average travelers’ cost by 25, 

18, and 43 million dollars over the course of 18 years of planning horizon in simulations 1 to 3, 

respectively. The reason the robust scheme outperforms the deterministic scheme is that many 

travel demand sets (instead of only one set) are considered in developing a robust scheme.    

Additionally, the standard deviation of the travelers’ cost under a robust scheme is also less 

than or equal to that under the deterministic scheme in simulations 1–3, which demonstrates the 

less volatile performance of the robust scheme compared to the deterministic scheme. This is due 

to the more conservative approach of the road infrastructure agency under the robust scheme to 

plan for the worst-case travel demand scenario. A similar discussion applies to the differences 

between robust and deterministic schemes in terms of the average total cost and the charging cost 

of EVs.  

 

Table 4.3. Performance of the robust and deterministic schemes in the Monte Carlo simulation 

Simulation Measures (in million dollars) Robust Scheme Deterministic Scheme 

1 

Average travelers’ cost $70,760 $70,803 

Average charging cost of EVs $5,115 $5,159 

Standard deviation of travelers’ cost 101 102 
    

2 

Average travelers’ cost $75,135 $75,160 

Average charging cost of EVs $5,474 $5,498 

Standard deviation of travelers’ cost 145 146 

3 

Average travelers’ cost $78,821 $78,839 

Average charging cost of EVs $5,776 $5,795 

Standard deviation of travelers cost 119 120 
Sim1 tends to have relatively lower demand levels on average  
Sim2 tends to have relatively medium demand levels on average  
Sim3 tends to have relatively higher demand levels on average  
Details of simulations are provided on pages 52 and 53.  
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4.4 Impacts of Construction Budget 

Next, the impacts of the construction budget on the optimal design of electric charging 

infrastructure are investigated using four cases. The construction budget used in the previous 

analysis (Section 4.3) is referred to as case 1, which is a base case in this analysis. The construction 

budget in each period for cases 2 to 4 is derived by multiplying the construction budget of case 1 

by 1.5, 2, and 2.5 for each period, respectively. Therefore, the corresponding budgets for cases 2–

4 are as follows: 12, 16, and 20 million dollars, respectively. In the analyses of this section, budget 

case 1 is considered the base case, and the performance of other cases is compared to budget case 

1. Figure 4.4 shows the effects of a budget increase on the travel time savings of travelers. Travel 

cost savings refers to the difference between the monetized total travel time of a budget case and 

budget case 1. Increasing the construction budget saves more travel time for travelers due to more 

constructed charging stations and their accessibility (Figure 4.4a). Therefore, increasing the 

construction budget results in more charging stations and a reduction in travel time for travelers. 

However, the marginal savings of travel time (savings in travel time per construction budget) 

decreases by increasing the budget (Figure 4.4b). This shows that even though more charging 

stations are constructed in cases 3 and 4 compared to case 2, this does not result in a significant 

decrease in the average travelers’ cost. Because there are enough charging stations on the network, 

constructing more charging stations cannot help travelers further decrease their travel costs. 

 

  

(a) Savings in total travel time (b) Marginal travel time savings 

Figure 4.4. Effects of budget on travel time and travelers’ cost 

 



 

 

49 

Besides the savings in total travel time of travelers, the effects of construction budgets on 

the total savings in charging costs of EVs are investigated (Figure 4.5). The effects of the 

construction budget on the total charging costs of EVs are similar to the discussed effects on the 

total travel cost of travelers. Similarly, Figure 4.5a shows that increasing the construction budget 

increases the saved charging costs of EVs (defined as the difference between the charging costs of 

EVs in a budget case and budget case 1). Moreover, the marginal saved charging costs show 

decreasing patterns over the budget costs (Figure 4.5b).  

 

 

  

(a) Total savings in charging cost (b) Marginal savings in charging cost 

Figure 4.5. Effects of budget on charging cost of EVs 

 

Next, the effects of the construction budget on the unused charging station capacity are 

discussed. As expected, increasing the construction budget results in more charging stations in the 

network and, therefore, more unused charging station capacity (Figure 4.6). Although there is a 

penalty for the unused capacity, the number of constructed charging stations increases with the 

increase in the budget. This is because the decrease in travelers' costs caused by constructing more 

charging stations prevails over the penalties caused by the unused charging station capacity. For 

instance, in simulation 1, the travelers’ cost decreases by $14 million in case 2, while the penalty 

for unused charging station capacity is increased by $0.16 million. 
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Figure 4.6. Effects of budget on unused electric charging capacity 

 

The comparison of robust schemes under different budget cases is summarized in Table 

4.4. Besides the total travel time and charging costs of EVs, the actual expenditures under the 

budget cases are shown in Table 4.4. Under budget cases 2 and 3, the construction expenditure 

increases by $3 million compared to case 1 due to the higher number of charging stations 

constructed. However, it decreases by $1 million under budget case 4 compared to cases 2 and 3, 

since more charging stations are constructed in the initial periods with lower costs. As the 

construction budget increases, there is more construction in the initial periods of the planning 

horizon since the construction is less costly in those periods compared to the latter ones.  

 

Table 4.4. Relative performance of the robust schemes with different construction budget levels  

Sim # Measures (in million dollars) Construction Budget Case 

 2 3 4 

1 

Relative construction expenditure +$3 +$3 +$2 

Relative travelers’ cost –$12 –$17 –$20 

Relative penalty of unused charging station capacity +$0.12 +$4.38 +$4.68 

Relative charging cost of EVs –$18 –$23 –$27 

2 

Relative construction expenditure +$3 +$3 +$2 

Relative travelers’ cost –$14 –$19 –$23 

Relative penalty of unused charging station capacity  +$0.16 +$4.67 +$4.97 

Relative charging cost of EVs –$22 –$28 –$31 

3 

Relative construction expenditure +$3 +$3 +$2 

Relative travelers’ cost –$19 –$24 –$28 

Relative penalty of unused capacity of charging stations +$0.21 +$4.83 +$5.14 

Relative charging cost of EVs –$27 –$32 –$36 
Sim1 tends to have relatively lower demand levels on average;  

Sim2  tends to have relatively medium demand levels on average 

Sim3 tends to have relatively higher demand levels on average   
Details of simulations are provided on pages 52 and 53.   
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 CONCLUDING REMARKS 

5.1 Study Conclusion 

This study investigated the optimal location of electric charging stations and the decommissioning 

of existing refueling stations in the context of intercity trips over a long-term planning horizon. 

The uncertainties in refueling and electric charging demand are taken into account by considering 

uncertainties in travel demand forecasts over a long-term planning horizon. Then, the research 

accounts for uncertainty in travel demand forecasts using a travel demand uncertainty set for each 

period. Furthermore, due to the significant difference in driving ranges of various EV models, this 

study also accounts for the driving range heterogeneity of EVs.  

The problem is formulated as a min-max mathematical program where the weighted sum 

of the worst-case (maximum) total system travel cost and the total penalty for unused charging 

station capacity during the planning horizon is minimized. The formulated min-max problem is 

considered an NP-hard problem; therefore, a cutting-plane scheme is adopted to solve the problem 

efficiently, where two subproblems are solved in each iteration. The first subproblem yields the 

optimal timeline and location for constructing new charging stations and decommissioning 

existing refueling stations based on a subset of demand uncertainty sets. The second subproblem 

identifies a new worst-case travel demand uncertainty vector to include in the demand uncertainty 

subset of the first subproblem.  

The problem is applied to the Sioux Falls network. It is assumed that for this network, the 

road infrastructure agency seeks to determine the optimal location and timeline for constructing 

new electric charging stations and decommissioning existing refueling stations. It is shown that, 

due to the higher conservatism of the road infrastructure agency under the robust scheme, a higher 

number of charging stations needs to be constructed compared to the deterministic scheme. 

Further, under the robust scheme, new charging stations are located in more congested areas of the 

network compared to the deterministic scheme. It is also observed that if the refueling demand is 

significantly lower than the operational capacity of refueling stations, there is no significant 

difference between the robust and deterministic scheme strategies for decommissioning existing 

refueling stations. 
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Three sets of Monte Carlo simulations were carried out to assess the performance of a 

robust scheme compared to its deterministic counterpart. The results of the computational 

experiments illustrate that the proposed robust scheme outperforms the deterministic scheme based 

on various criteria such as travelers’ costs, charging cost of EVs, construction cost, and total cost. 

In particular, while the deterministic scheme cannot satisfy any of the simulation instances 

generated based on the uniform and pessimistically asymmetric distributions, all the simulation 

instances are feasible under the proposed robust scheme. Further, the comparison of robust 

schemes with different classes of construction budgets illustrates that although constructing more 

charging stations helps to decrease travelers’ costs, constructing too many charging stations 

beyond a certain point does not significantly decrease travelers’ costs.  

The framework presented for constructing electric charging stations over a long-term 

planning horizon can provide guidance to road agencies in their long-term planning and budgeting 

functions. This is important in the current era where these agencies continue to seek knowledge on 

how they can best prepare the existing roadway infrastructure to support a new era of 

transformative transportation technologies, including automated, connected, and electric vehicles. 

Such guidance can also help mitigate the inherent uncertainties associated with long-term planning 

with regard to these technologies. The level of service is always a function of supply and demand, 

and as stewards of the public road infrastructure, road agencies are responsible for anticipating 

demand and providing infrastructure supply. On the one hand, inadequate infrastructure will not 

only slow the adoption of new technologies but also pose public relations problems for the agency. 

On the other hand, excess supply will lead to capacity underutilization, economic inefficiency, and 

the waste of scarce resources. The developed framework can also help road agencies prepare 

proactively for emerging technologies in a more confident manner. Additionally, the framework 

can be used by agencies to incorporate robustness into their long-term EV infrastructure plans to 

account for the inevitable uncertainties associated with supply and demand. The framework 

presents (and demonstrates), for the benefit of road agencies, the advantage of robust planning 

over deterministic planning. Further, the framework is designed to be flexible to adjust to the road 

agency’s future objectives, which often evolve with changes in the political environment, 

economic conditions, or social forces. The framework and solution method are designed to 

facilitate the practical implementation of various network topologies, inventories of existing or 

required charging and refueling stations, and lengths of planning horizons.  



 

 

53 

5.2 Study Limitations and Future Work 

This research can be extended in several directions. First, although our study considers the 

uncertainty in travel demand, there are other sources of uncertainty that should be considered in 

electric charging station planning, especially in long-term planning. For example, the uncertainty 

in the market penetration of different classes of EVs has not been assessed. An interesting research 

direction would be to investigate the market penetration rate of EVs as a stochastic function of 

charging station availability, electricity or gas prices, and potential government incentives. 

Another important source of uncertainty is the adequacy of electric power at the charging stations. 

Electric charging stations may experience fluctuations in the available electricity supplied by the 

electric grid. Therefore, considering uncertainties in the electric charging station capacity in the 

planning framework is another direction for future studies. Second, this study does not incorporate 

any updated information on travel demand into the planning framework. However, as time goes 

on, updated predictions, which are mostly more accurate than the initial predictions, will become 

available and can be used in the planning framework. Therefore, an adaptive framework is needed 

to include updated information on travel demand in the planning framework.  

Third, the emergence of connected and autonomous vehicles (CAVs), which are expected 

to serve as EVs, could impose high levels of uncertainty on the charging behavior of EV-using 

travelers. Hence, another future research direction is to incorporate the charging behavior of CAVs 

into the robust design of charging stations. Seilabi et al. (2022c) and Pourgholamali et al. (2023) 

discussed the sibling relationships including the synergies between CAVs and EVs. Fourth, this 

thesis assumes fast-charging stations are the only electric charging types in the network. However, 

wireless electric charging lanes and dynamic electric charging (Konstantinou and Gkritza, 2021) 

are the other expected electric charging methods that could be used by intercity travelers. Therefore, 

incorporating the other electric charging methods is another direction for future studies.  

Other prospective directions for future research on EV charging infrastructure investment 

planning include consideration of emissions (McLaren et al., 2016; Miralinaghi et al., 2020), which 

can be further reduced with enhanced planning that promotes EV market growth and ICEV market 

decline; alternative charging fee revenue impacts from EV charging fee policies and associated 

revenues (Konstantinou et al., 2022); regional-scale location planning of EV charging stations 

(Chen et al., 2023); and the synergies associated with car sharing and ride sharing (Liao and 

Correia, 2022).  



 

 

54 

In addition, the present study focuses on intercity trips; the link travel times are assumed 

to be constant, and thus, prospective future studies could address intracity trips and duly consider 

urban traffic congestion. Finally, this study did not consider the time EV users spend waiting at 

charging stations when there is no available charging spot, and it assumed that EV users simply 

pass that charging station and drive to another one. However, EV users may wait at charging 

stations until a charging spot becomes available instead of driving to another charging station.   
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	𝑞𝑟,𝑠𝑚,𝑡:  Realized travel demand of vehicle class 𝑚 of O-D pair (𝑟,𝑠) in period 𝑡 
	𝑢𝑖𝑤,𝑚,𝑡:  Traveler distance just before visiting node 𝑖 from the last-visited charging station for travelers of O-D pair 𝑤 for class 𝑚 in period 𝑡 
	𝑢′𝑖𝑤,𝑚,𝑡:  Traveler distance after visiting node 𝑖 from the last-visited charging station for travelers of O-D pair 𝑤 for class 𝑚 in period 𝑡 
	𝜈𝑖,𝑗𝑡:  Traffic flow of link (𝑖,𝑗) in period 𝑡 
	𝜏:  Set of periods 
	𝛺(𝒒):  UE link flows for each 𝒒 
	𝜙1:  Weight of total system travel time 
	𝜙2:  Weight of total penalty of unused chargers in the objective function 
	𝛽𝑡:  Value of time of travelers in period 𝑡 
	  
	NOTATIONS (CONTINUED) 
	𝛿𝑘,𝑖,𝑗,𝑟,𝑠𝑚,𝑡: Path indicator, 1 if the link (𝑖,𝑗) is on path 𝑘 for vehicle class 𝑚 travelers of O-D pair (𝑟,𝑠) in period 𝑡, and 0 otherwise  
	Γ𝑡:  Uncertainty budget in period 𝑡 
	Ψ:  Penalty for unused charging station capacity  
	𝑡:  Conversion factor to calculate the present value of cost of period 𝑡 
	𝛥

	𝜅:  Conversion factor for travelers’ travel cost and unused charging station capacity 
	𝜋:  Constant interest rate 
	Λ:  A sufficiently large number 
	𝜍𝑖,𝑗:  Binary variable, 1 if link (𝑖,𝑗) belongs to the shortest path, and 0 otherwise 
	𝜒𝑖:  Remaining charge or fuel level at node 𝑖 after recharging or refueling, respectively 
	Υ𝑖:  The recharging or refueling amount at node 𝑖 
	𝜌𝑖,𝑗:  Auxiliary variable, 0 if link (𝑖,𝑗) belongs to the shortest path, 1 otherwise 
	ϱ𝑖𝑚,𝑡:  Maximum refueling or recharging amount that can be provided at node 𝑖 for vehicle class 𝑚 in period 𝑡 
	𝜑𝑖𝑡:  Operation status of refueling station at node 𝑖 and period 𝑡 
	𝜃𝑖𝑡:  Operation status of charging station at node 𝑖 and period 𝑡 
	𝜇𝑖𝑤,𝑡,𝑚:  Travel time of travelers of O-D pair 𝑤 for class 𝑚 at node 𝑖 and in period 𝑡 
	𝜁𝑖𝑗𝑤,𝑡,𝑚: Imposed excessive travel time between link (𝑖,𝑗) for travelers of class 𝑚 between O-D pair 𝑤 at period 𝑡 
	𝑛̅𝑖:  capacity of charging station 𝑖  
	LIST OF ACRONYMS 
	BEV  Battery Electric Vehicles 
	CAV  Connected and Autonomous Vehicle 
	EV  Electric Vehicles 
	ER-EVs Extended-range Electric Vehicles 
	FCEVs Fuel Cell Electric Vehicles 
	GPS  Global Positioning System 
	HEVs Hybrid Electric Vehicles 
	ICEV Internal Combustion Engine Vehicle  
	NGSA-II Non-dominated Sorting Genetic Algorithm II 
	O-D  Origin-Destination 
	PHEVs Plug-In Hybrid Electric Vehicles 
	SoC  State of Charge 
	TOPSIS Technique for Order of Preference by Similarity to Ideal Solution 
	WCL  Wireless Charging Lanes 
	WPT  Wireless Power Transfer 
	  
	LIST OF COMMONLY USED TERMS 
	Transportation decision-maker 
	Transportation decision-maker 
	Transportation decision-maker 
	Transportation decision-maker 

	A road agency that owns the roadway infrastructure. This agency is responsible for constructing electric charging facilities. In some cases, charging facility types are provided by a private-sector entity through lease, through design-build-operate contracting, or as infrastructure owned/operated independently of the road network. In such cases, the transportation decision-maker is the road agency that makes the investment decisions in conjunction with the private-sector entity. 
	A road agency that owns the roadway infrastructure. This agency is responsible for constructing electric charging facilities. In some cases, charging facility types are provided by a private-sector entity through lease, through design-build-operate contracting, or as infrastructure owned/operated independently of the road network. In such cases, the transportation decision-maker is the road agency that makes the investment decisions in conjunction with the private-sector entity. 


	EV charging facility planning 
	EV charging facility planning 
	EV charging facility planning 

	Long-term decision-making on electric charging infrastructure, regarding location, year of installation/construction, and charging capacity.  
	Long-term decision-making on electric charging infrastructure, regarding location, year of installation/construction, and charging capacity.  


	Traffic network user equilibrium 
	Traffic network user equilibrium 
	Traffic network user equilibrium 

	Users of a congested road network, seeking to determine their travel paths of minimal cost from their origins to their respective destinations, choose their most convenient path selfishly. At equilibrium, the number of trips between an origin and a destination equals the travel demand given by the market price (i.e., the travel time for the trips), and all users sharing the same origin and destination experience the same travel time. 
	Users of a congested road network, seeking to determine their travel paths of minimal cost from their origins to their respective destinations, choose their most convenient path selfishly. At equilibrium, the number of trips between an origin and a destination equals the travel demand given by the market price (i.e., the travel time for the trips), and all users sharing the same origin and destination experience the same travel time. 


	Dynamic charging 
	Dynamic charging 
	Dynamic charging 

	Charging an EV while it is moving. 
	Charging an EV while it is moving. 


	Charging station 
	Charging station 
	Charging station 

	Equipment that connects an EV to a source of electricity to recharge it using a connector (cable). 
	Equipment that connects an EV to a source of electricity to recharge it using a connector (cable). 


	Charging station capacity  
	Charging station capacity  
	Charging station capacity  

	Number of travelers that can use the EV charging station per unit of time. 
	Number of travelers that can use the EV charging station per unit of time. 


	EV driving range  
	EV driving range  
	EV driving range  

	The estimated distance an EV can drive at a given quantity of battery level. 
	The estimated distance an EV can drive at a given quantity of battery level. 


	EV charging facility method 
	EV charging facility method 
	EV charging facility method 

	Static or dynamic charging.  
	Static or dynamic charging.  


	Static charging  
	Static charging  
	Static charging  

	A method of charging an EV that requires the EV to be still.  
	A method of charging an EV that requires the EV to be still.  


	Wireless charging lane  
	Wireless charging lane  
	Wireless charging lane  

	Equipment that recharges an EV without a connector (cable) while the EV is moving.  
	Equipment that recharges an EV without a connector (cable) while the EV is moving.  


	Market penetration  
	Market penetration  
	Market penetration  

	Measure of how many EVs/ICEVs are being purchased by travelers. 
	Measure of how many EVs/ICEVs are being purchased by travelers. 



	  
	ABSTRACT 
	The rising demand for EVs, motivated by their environmental benefits, is generating increased need for EV charging infrastructure. Also, it has been recognized that the adequacy of such infrastructure helps promote EV use. Therefore, to facilitate EV adoption, governments seek guidance on continued investments in EV charging infrastructure development. The high cost of these investments motivates governments to seek optimal decisions on EV-related investments including EV charging infrastructure, and such d
	 INTRODUCTION 
	1.1 Background 
	Global concerns associated with the environment, climate change, and energy security continue to motivate the transition from fossil fuel vehicles (also referred to as internal combustion engine vehicles; ICEV) to other fuel types. Of the various types of alternative fuel vehicles, electric vehicles (EVs) have been proven to be a viable option to replace ICEVs. 
	To support the ICEV–EV transition, governments and automakers globally continue to make efforts, through policy and design, to increase the EV market share. For example, the United Kingdom and France seek to end ICEV sales by 2040 (Racherla & Waight, 2018). Despite global efforts, the current BEV market share is still limited worldwide. For example, according to recent data, the EV market share is less than 2% in the United States, even though several incentive programs to promote EVs have been implemented 
	The lack of electric charging stations is well recognized as one of the barriers to EV adoption in the US (Indiana Department of Transportation, 2022; Michigan Department of Transportation, 2022; New York Department of Transportation, 2022; Texas Department of Transportation, 2022). Researchers have found that in addition to initiatives including enhancements to battery capacity, reduction of recharging time, and increase in time-to-depletion, the provision of adequate electric charging stations helps reduc
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	Figure
	Figure 1.1. EV sales share prediction in US market (EVAdoption, 2023) 
	Franke and Krems (2013) argued that unless public authorities and private entities provide adequate charging stations to satisfy EV charging demand, customers will not be willing to purchase EVs. Due to the importance of charging stations, the US government recently provided a $5-billion budget for building EV charging infrastructure across the nation’s highway network (FHWA, 2022). 
	Such promotion of EVs is considered urgent in the current era for at least two reasons. First, the reduction of greenhouse gases is a major goal of the Infrastructure Investment and Jobs Act (IIJA; Public Law 117-58), an unprecedented piece of transportation legislation signed by President Biden in 2021. That legislation specifically targets climate change and therefore requires the Federal Energy Regulatory Commission to require each state to consider measures to promote greater transportation electrificat
	Similar to all infrastructure systems, the development of EV charging infrastructure must balance investment level and usage. On the one hand, inadequate charging stations will cause delays and frustration for EV users; on the other hand, an excessive number of stations will lead 
	to excess idle time, underutilization of the stations, and, ultimately, a waste of resources. Constructing adequate electric stations at well-chosen locations will decrease driving range anxiety and, therefore, is paramount to facilitating EV promotion (Cihat Onat et al., 2018; Coffman et al., 2016; Desai et al., 2021; Fauble et al., 2022; Funke et al., 2019; F. Guo et al., 2018; Huang and Kockelman, 2020). From a broader perspective of infrastructure management, urban infrastructure investment planning to 
	1.2 Electric Vehicle Types 
	Different types of EVs have been introduced in the vehicle manufacturing industry. These EVs differ mainly based on electricity storage technology, electric recharging type, and propulsion force source. In this subsection, EV types and their important characteristics are introduced:  
	•
	•
	•
	 Battery electric vehicles (BEVs): There is no internal combustion engine in BEVs, and BEVs do not use any sort of liquid fuel. Therefore, BEVs are propelled only by electricity. Different BEVs have different driving ranges that range from approximately 100 to 300 miles (Das et al., 2020; Sanguesa et al., 2021). 

	•
	•
	 Plug-in hybrid electric vehicles (PHEVs): This type of EV takes advantage of the hybrid propulsion mechanism of an internal combustion engine and electricity power. PHEVs can be recharged by available electricity charging facilities (Das et al., 2020; Sanguesa et al., 2021). 

	•
	•
	 Hybrid electric vehicles (HEVs): HEVs have the same propulsion mechanism as PHEVs: a combination of a conventional internal engine and electricity power. However, HEVs are different from PHEVs regarding the battery charging process. HEVs' batteries are not recharged through available electricity charging facilities. Instead, the batteries in HEVs are charged by the power generated by the internal combustion engine. For example, some HEVs are able to generate electricity during braking (Das et al., 2020; Sa


	•
	•
	•
	 Fuel cell electric vehicles (FCEVs): FCEVs burn compressed hydrogen to generate energy, and the generated energy is further converted to electricity. Water is the only material produced as a result of this process. FCEVs cannot be charged by currently available charging facilities (Das et al., 2020; Sanguesa et al., 2021). 

	•
	•
	 Extended-range electric vehicles (ER-EVs): ER-EVs are similar to BEVs; however, they are equipped with combustion engines used for battery charging. More specifically, the combustion engine does not generate any propulsion power and is not connected to the wheels (unlike HEVs and PHEVs, which use internal combustion engines to generate propulsion power too) (Das et al., 2020; Sanguesa et al., 2021). 


	1.3 Electric Charging Facilities 
	Three mechanisms for EV charging have been discussed in the literature: (i) static charging (using charging stations), (ii) inductive/wireless charging (Chen et al., 2016), and (iii) battery swapping (Adler et al., 2016). In the following, static and wireless charging are introduced in more detail. 
	Based on the power level of the charging equipment, the static charging method can be classified further into three levels. Level 1 charges EVs using 120-volt AC outlets, which is the lowest available voltage level in residential and business buildings in the US. So, level 1 is suitable for residential locations. Level 1 is a cheapest charging facility and can be set up at residential locations without any further required infrastructure. As level 1 provides a small amount of power, the charging duration is
	Wireless charging takes advantage of electromagnetic fields to provide conductive charging for EVs. Through this method, EV users can charge EVs wirelessly, without any cable connection. Three types of wireless charging have been developed. The first is stationary wireless 
	charging, which provides conductive charging at a static location (Das et al., 2020). The second is dynamic wireless charging, which enables EV users to charge their vehicles while they are driving. Therefore, they do not need stop at any charging stations (Das et al., 2020). The last type of wireless charging is quasi-dynamic wireless charging. With this technology, EVs can still charge in motion but at a slower speed than dynamic wireless charging (Das et al., 2020). 
	1.4 Problem Statement  
	There is a need to determine a model for the optimal location of level-3 electric charging stations in order to satisfy the charging demand of travelers for intercity trips during the transition period on the path toward full EV fleet market share. Due to their fast-charging technology, these types of EV charging stations are suitable for rural networks. Therefore, travelers can charge their EVs in a few minutes and continue their journeys. In addition to prospective new locations for the construction of el
	In practice, the task of locating EV charging infrastructure on a road network has been identified as a constituent aspect of the strategic plans of service providers and governments over long planning horizons. Due to the long-term horizon that is typical of agency strategic plans, the service provider needs to carry out a strategic network design that accommodates EV charging demand. Such demand is influenced by the EV adoption rate and the driving behavior of travelers. Over the next few decades, the EV 
	increase is uncertain due to factors including initial price sensitivity, energy cost, range reliability, and charging infrastructure availability (Liu & Lin, 2016). Further, fast-growing technological advancements and disruptive technologies, including electric automated vehicles, are expected to exacerbate the uncertainty in travel demand and driving patterns over the next few decades. Given the uncertainty in the EV adoption rate and driving behavior, it can be argued that EV charging demand can also be 
	1.5 Problem Objectives 
	This study seeks to duly and explicitly consider the uncertainty in EV charging demand over a long-term planning horizon (that is, on the order of several years) to locate EV charging stations to serve intercity travel. As stated earlier, the uncertainty in electric charging demand can be attributed to uncertainty in travel demand forecasts over a long-term planning horizon. In practice, there is inherent uncertainty in forecasting travel demand over a long-term planning horizon, and the accuracy of travel 
	In summary, the objectives of this study in relation to the literature are as follows: This study seeks to develop a robust design for a network of electric charging stations to address the uncertainty of travelers' refueling and electric charging demands. The study also seeks to develop a framework that prepares the charging infrastructure during the transition stage by gradually decommissioning existing refueling stations in the context of intercity trips. The third contribution is the consideration of th
	1.6 Scope of the Study 
	This thesis considers electric charging station planning from the perspective of two key stakeholders: the owner (an urban road agency) and EV users. As Adey (2018) pointed out, the management of any infrastructure should address effectiveness and efficiency goals from the perspectives of the key stakeholders. In this regard, the urban road agency, a key stakeholder in the analysis of this thesis, provides the investment resources for deploying the electric charging stations. The objectives of this stakehol
	1.7 Organization of the Thesis 
	The remaining sections are structured as follows: Section 2 presents a literature review on EV charging station planning. Next, the proposed methodology and solution algorithm are introduced in Section 3. Section 4 discusses the numerical experiments that compare the performances of robust and deterministic designs of electric charging station locations under travel demand uncertainty forecasts. Finally, the study’s insights and concluding remarks are provided in Section 5.  
	Most parts of this thesis are reprinted from the article Pourgholamali et al. (2023) with permission from the Journal of Infrastructure Systems by the American Society of Civil Engineers. 
	  
	 LITERATURE REVIEW 
	2.1 Introduction 
	EV charging facilities supply electrical energy for charging EVs, and, therefore, the operation of EVs depends on them. It is important to make effective decisions on constructing new facilities to promote EV adoption. These decisions involve many aspects of EV charging facilities, such as the types of charging facilities, their locations, and their charging levels. There are three levels of EV charging facilities: level 1, level 2, and level 3. These levels of EV charging facilities are mainly different in
	2.2 Electric Charging Location Problems 
	There is an extensive body of research on EV charging station planning. These studies have covered different aspects, including charging technologies (Brenna et al., 2020; Fisher et al., 2014; Shevchenko et al., 2019); travelers’ behaviors and preferences in electrification (Y. Guo et al., 2021, 2022); and optimal charging station configuration (Bai et al., 2019; Kchaou-Boujelben & Gicquel, 2020; Kınay et al., 2021; Yıldız et al., 2019). This study relates to only the past studies on optimal charging statio
	2.2.1 Deterministic Demand  
	The first group deals with locating stations under the assumption of deterministic refueling demand. Zheng et al. (2017) determined the optimal locations of EV charging stations to minimize the total system travel time and electricity consumption of travelers. Arslan and Karaşan (2016) developed a mixed-integer program for the EV charging station location problem, where the goal of the road infrastructure agency is to maximize the distance traveled by EVs. They solved the problem by using the Benders decomp
	incorporated real datasets of an urban area into a multi-objective optimization framework to select the best locations for electric charging stations. In this framework, they tried to maximize the utility coverage of the charging stations while minimizing their installation costs. Utility coverage was defined as the population, traffic, and activities covered by charging stations (Jordan et al., 2022). In another study, Xu et al. (2022) proposed a user-based location framework to maximize EV-user satisfacti
	2.2.2 Stochastic Demand 
	The second group of studies deals with uncertainty in both demand and supply (e.g., link capacity) of a traffic network. Sathaye and Kelley (2013) proposed a continuous optimization approach for constructing electric charging stations along highway corridors to minimize the distance traveled by EVs to recharge at charging stations, subject to a budget constraint. Hosseini and MirHassani (2015) developed a multi-period, two-stage decision framework to locate permanent and portable EV charging facilities. The
	driving range uncertainty in the optimal planning of electric charging stations. More specifically, they captured the uncertainties in the energy consumption of EVs and the energy availability of EV batteries. Liu et al. (2023) considered the uncertainties in electricity power output in bus electric charging station planning. They proposed a two-stage stochastic programming formulation that used a sample average approximation to capture the uncertainty of electricity power outputs. The proposed formulation 
	2.3 Wireless Electric Charging Lanes 
	Wireless electric charging lanes (WCL) enable EVs to charge their batteries while in motion. Wireless charging offers EVs a potentially unlimited driving range as long as the vehicle is operating in the charging lane. However, installing wireless electric charging lanes is challenging, as it is expensive and impacts traffic congestion. Therefore, a body of literature has focused on deploying optimal wireless electric charging lanes on road networks. In this subsection, some of the efforts that have been mad
	Chen et al. (2017) investigated the optimal deployment of charging stations and wireless charging lanes along a long traffic corridor to serve the electricity charging needs of EVs. They proposed a choice equilibrium model to capture the charging facility choices of EV drivers. Their model assumes EV drivers try to minimize their driving time, charging fees, charging time, and equipment costs (Z. Chen et al., 2017). Mubarak et al. (2021) proposed a framework for the optimal wireless charging lanes to serve 
	an optimization approach to determine the optimal locations and lengths of wireless electric charging lanes (Du et al., 2022). Odeh et al. (2022) presented an optimal allocation process for planning the locations of WCL lanes within the city of Dubai, UAE. They chose a set of candidate wireless electric charging lanes based on collected traffic data from the city. Then, they conducted an energy analysis on the selected candidate links to pick the most energy-efficient links to deploy wireless electric charg
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	Study 

	Stochasticity  
	Stochasticity  

	Planning horizon 
	Planning horizon 

	Driving range heterogeneity 
	Driving range heterogeneity 

	Refueling stations Decommissioning 
	Refueling stations Decommissioning 


	Wireless charging 
	Wireless charging 
	Wireless charging 

	Chen et al. (2017) 
	Chen et al. (2017) 

	Deterministic 
	Deterministic 

	Single 
	Single 

	— 
	— 

	— 
	— 
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	Mubarak et al. (2021) 
	Mubarak et al. (2021) 

	Deterministic 
	Deterministic 
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	Tran et al. (2022) 
	Tran et al. (2022) 

	Deterministic 
	Deterministic 
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	Majhi et al. (2022) 
	Majhi et al. (2022) 

	Deterministic 
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	Du et al. (2022) 
	Du et al. (2022) 
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	Deterministic 
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	Single 
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	— 
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	Deterministic 
	Deterministic 
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	Stochastic (driving range) 
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	Single 
	Single 
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	— 
	— 


	TR
	Kınay et al. (2021) 
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	Deterministic 

	Single 
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	— 
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	TR
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	Deterministic 
	Deterministic 
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	— 
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	2.4 Summary 
	This chapter presents a review of the literature on electric charging facility planning.  shows a summary of the reviewed studies in this chapter. The majority of the studies assume deterministic values for the main planning components (e.g., travel demand and electricity consumption) and focus on a single-period planning horizon. However, there are a few studies that attempt to incorporate stochasticity in charging facility planning (Sathaye and Kelley, 2013; Hosseini and MirHassani, 2015; Yıldız et al., 2
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	 METHODOLOGY 
	This chapter presents the methodology implemented in this thesis for a robust electric charging station deployment. First, the preliminary results of the proposed methodology are presented. Then, the proposed mathematical framework and the implemented solution algorithm are introduced.  
	3.1 Preliminaries  
	The presented methodology focuses on constructing level-3 charging stations on a rural road network. Hence, the effects of traffic congestion on travel time are neglected, and it is assumed that travelers experience free-flow travel time. Throughout this thesis, some other main assumptions are made. First, both ICEVs and EVs have limited driving range, and the driving range of ICEVs is higher than that of EVs. Next, ICEVs and EVs are fully refueled or recharged before departing from their origins. Travelers
	Let 𝐺=(𝑁,𝐴) represent the road network. The planning horizon is divided into 𝑇 periods, which comprise the total duration of the planning horizon (typically, several years). Let 𝜏 denote the set of periods. The mixed-traffic scenario consists of EVs with different driving ranges and ICEVs. Let 𝑀 denote the set of vehicle types with cardinality |𝑀| where class 1 denotes ICEVs. Let 𝑚>1 denote different classes of EVs with different driving ranges, where 𝑅𝑚,𝑡 is the driving range of EVs of class 𝑚 
	This study assumes that charging and refueling stations are located on nodes or links (specifically, beside the links). Travelers experience a delay during recharging or refueling. To capture the impact of charging and refueling delays on travelers and the operational capacity of stations, the road network configuration is modified. For each node or link with a charging or 
	refueling station (either candidate or existing), a dummy node and certain dummy link(s) are included depending on the connection of the original node or link to other nodes in the road network. The set of dummy candidate nodes for charging stations is represented by 𝑁̅. The set of dummy nodes with existing refueling and charging stations are denoted by 𝑁̿ and 𝑁̌, respectively. 𝑁̌ is assumed to be a subset of 𝑁̅. Let 𝐴̌ denote the set of dummy links.  
	 
	Figure
	(a) electric charging station on a node 
	 
	 
	Figure
	(b) electric charging station on a link 
	 
	Figure 3.1.  Transformation of traffic network 
	 
	The network transformation is illustrated in Figure 3.1. Figure 3.1a represents the original network where the charging station is located on node 𝑗. To capture the impact of charging delay and the capacity of station 𝑗, dummy node 𝑗′ is included in the charging station (Figure 3.1a). Since node 𝑗 is connected to nodes 𝑖 and 𝑘, two dummy links, (𝑗’,𝑖) and (𝑗’,𝑘), are included. The delay of the dummy link, (𝑗,𝑗′), 𝑐̂𝑗,𝑗′𝑚,𝑡, is equal to the charging delay of EV travelers. The length of the 
	dummy link is set to zero to ensure that it does not impact the driving range. Travelers who traverse through link (𝑗,𝑗′) for recharging can continue their trips by using links (𝑗′,𝑖), and (𝑗′,𝑘) as they are identical to the links (𝑗,𝑖), and (𝑗,𝑘), respectively. Similarly, a dummy node 𝑗′ is added to the network to capture the charging or refueling delay when a charging or refueling station is located at the link (Figure 3.1b). The dummy node 𝑗′ is connected to nodes 𝑖 and 𝑗 by dummy links tha
	3.2 Mathematical Modeling 
	In practice, forecasts of travel demand are uncertain over a long-term planning horizon. This study assumes that it belongs to an uncertainty set. The travel demand uncertainty set for each vehicle class 𝑚 for each O-D pair (𝑟,𝑠) in each period 𝑡 is denoted by 𝑍𝑟,𝑠𝑚,𝑡, in which 𝑧=1 represents the deterministic travel demand scenario that can be used for analysis without considering travel demand uncertainty. It can denote the peak hour for travel demand. Let 𝒑 denote the vector of the aforementio
	𝑄={𝒒|∑𝑞𝑟,𝑠𝑚,𝑧,𝑡𝑝𝑟,𝑠𝑚,𝑧,𝑡𝑧∈𝑍𝑟,𝑠𝑚,𝑡=𝑞𝑟,𝑠𝑚,𝑡,∑𝑝𝑟,𝑠𝑚,𝑧,𝑡𝑧∈𝑍𝑟,𝑠𝑚,𝑡=1,𝑝𝑟,𝑠𝑚,𝑧,𝑡∈{0,1}} 
	𝑄={𝒒|∑𝑞𝑟,𝑠𝑚,𝑧,𝑡𝑝𝑟,𝑠𝑚,𝑧,𝑡𝑧∈𝑍𝑟,𝑠𝑚,𝑡=𝑞𝑟,𝑠𝑚,𝑡,∑𝑝𝑟,𝑠𝑚,𝑧,𝑡𝑧∈𝑍𝑟,𝑠𝑚,𝑡=1,𝑝𝑟,𝑠𝑚,𝑧,𝑡∈{0,1}} 
	𝑄={𝒒|∑𝑞𝑟,𝑠𝑚,𝑧,𝑡𝑝𝑟,𝑠𝑚,𝑧,𝑡𝑧∈𝑍𝑟,𝑠𝑚,𝑡=𝑞𝑟,𝑠𝑚,𝑡,∑𝑝𝑟,𝑠𝑚,𝑧,𝑡𝑧∈𝑍𝑟,𝑠𝑚,𝑡=1,𝑝𝑟,𝑠𝑚,𝑧,𝑡∈{0,1}} 
	𝑄={𝒒|∑𝑞𝑟,𝑠𝑚,𝑧,𝑡𝑝𝑟,𝑠𝑚,𝑧,𝑡𝑧∈𝑍𝑟,𝑠𝑚,𝑡=𝑞𝑟,𝑠𝑚,𝑡,∑𝑝𝑟,𝑠𝑚,𝑧,𝑡𝑧∈𝑍𝑟,𝑠𝑚,𝑡=1,𝑝𝑟,𝑠𝑚,𝑧,𝑡∈{0,1}} 
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	where 𝒒=(𝑞𝑟,𝑠𝑚,𝑧,𝑡,∀(𝑟,𝑠)∈𝑊,∀𝑚∈𝑀,𝑧∈𝑍𝑟,𝑠𝑚,𝑡,∀𝑡∈𝜏) denotes the set of potential travel demand vectors. In deriving the optimal strategy for charging and refueling stations, if the road infrastructure agency does not account for travel demand uncertainty and instead only incorporates a certain vector of travel demand (such as peak-hour travel demand), then the robust scheme is reduced to a conventional “deterministic” scheme. 
	The proposed robust mathematical program involves multiobjective optimization; therefore, the weights of total system travel time (Η1) and the total penalty of unused charging station capacity (Η2) are denoted by 𝜙1 and 𝜙2, respectively. Ψ is defined as the penalty for unused charging station capacity. Let 𝛥𝑡 be a factor for calculating the present value of costs in period 𝑡 that reflects the interest rates through the long-term planning horizon. Then, 𝛥𝑡 is equal to 1(1+𝜋)𝑡−1. Let 𝜅 denote the pa
	Upper-level model 
	min𝝋,𝜽(𝑚𝑎𝑥𝒑,𝒗 ( 𝜙1∙Η1+𝜙2∙Η2)) 
	min𝝋,𝜽(𝑚𝑎𝑥𝒑,𝒗 ( 𝜙1∙Η1+𝜙2∙Η2)) 
	min𝝋,𝜽(𝑚𝑎𝑥𝒑,𝒗 ( 𝜙1∙Η1+𝜙2∙Η2)) 
	min𝝋,𝜽(𝑚𝑎𝑥𝒑,𝒗 ( 𝜙1∙Η1+𝜙2∙Η2)) 
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	Η1=∑𝑡∙𝜅∙𝛽𝑡⋅(∑𝜈𝑖,𝑗𝑡∙𝑐𝑖,𝑗𝑡(𝑖,𝑗)∈𝐴𝑡∈𝜏+∑∑𝑣𝑖,𝑗𝑡∙𝑐̂𝑖,𝑗𝑚,𝑡(𝑖,𝑗)∈𝐴̌𝑚∈𝑀) 
	Η1=∑𝑡∙𝜅∙𝛽𝑡⋅(∑𝜈𝑖,𝑗𝑡∙𝑐𝑖,𝑗𝑡(𝑖,𝑗)∈𝐴𝑡∈𝜏+∑∑𝑣𝑖,𝑗𝑡∙𝑐̂𝑖,𝑗𝑚,𝑡(𝑖,𝑗)∈𝐴̌𝑚∈𝑀) 
	Η1=∑𝑡∙𝜅∙𝛽𝑡⋅(∑𝜈𝑖,𝑗𝑡∙𝑐𝑖,𝑗𝑡(𝑖,𝑗)∈𝐴𝑡∈𝜏+∑∑𝑣𝑖,𝑗𝑡∙𝑐̂𝑖,𝑗𝑚,𝑡(𝑖,𝑗)∈𝐴̌𝑚∈𝑀) 
	𝛥
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	Η2=∑Ψ⋅𝑡∙𝜅⋅∑∑(𝑛𝑗−𝜈𝑖,𝑗𝑡)𝑖:(𝑖,𝑗)∈𝐴̌𝑗:(𝑖,𝑗)∈𝐴̌|𝑗∈𝑁̅𝑡∈𝜏 
	Η2=∑Ψ⋅𝑡∙𝜅⋅∑∑(𝑛𝑗−𝜈𝑖,𝑗𝑡)𝑖:(𝑖,𝑗)∈𝐴̌𝑗:(𝑖,𝑗)∈𝐴̌|𝑗∈𝑁̅𝑡∈𝜏 
	Η2=∑Ψ⋅𝑡∙𝜅⋅∑∑(𝑛𝑗−𝜈𝑖,𝑗𝑡)𝑖:(𝑖,𝑗)∈𝐴̌𝑗:(𝑖,𝑗)∈𝐴̌|𝑗∈𝑁̅𝑡∈𝜏 
	𝛥
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	𝜑𝑖1=1 
	𝜑𝑖1=1 
	𝜑𝑖1=1 

	∀𝑖∈𝑁̿ 
	∀𝑖∈𝑁̿ 
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	𝜑𝑖𝑡≤𝜑𝑖𝑡−1 
	𝜑𝑖𝑡≤𝜑𝑖𝑡−1 
	𝜑𝑖𝑡≤𝜑𝑖𝑡−1 

	∀𝑖∈𝑁̿,∀𝑡∈𝛤 
	∀𝑖∈𝑁̿,∀𝑡∈𝛤 
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	∑𝑘𝑖𝑡 𝜃𝑖1𝑖∈𝑁̅≤𝐵1 
	∑𝑘𝑖𝑡 𝜃𝑖1𝑖∈𝑁̅≤𝐵1 
	∑𝑘𝑖𝑡 𝜃𝑖1𝑖∈𝑁̅≤𝐵1 
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	∑𝑘𝑖𝑡 (𝜃𝑖𝑡−𝜃𝑖𝑡−1)𝑖∈𝑁̅≤𝐵𝑡 
	∑𝑘𝑖𝑡 (𝜃𝑖𝑡−𝜃𝑖𝑡−1)𝑖∈𝑁̅≤𝐵𝑡 
	∑𝑘𝑖𝑡 (𝜃𝑖𝑡−𝜃𝑖𝑡−1)𝑖∈𝑁̅≤𝐵𝑡 

	∀𝑡∈𝛤,𝑡>1 
	∀𝑡∈𝛤,𝑡>1 
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	𝜃𝑖𝑡=1 
	𝜃𝑖𝑡=1 
	𝜃𝑖𝑡=1 

	∀𝑖∈𝑁̌,∀𝑡∈𝛤 
	∀𝑖∈𝑁̌,∀𝑡∈𝛤 

	TD
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	LI
	Lbl
	(9)   




	𝜃𝑖𝑡≥𝜃𝑖𝑡−1 
	𝜃𝑖𝑡≥𝜃𝑖𝑡−1 
	𝜃𝑖𝑡≥𝜃𝑖𝑡−1 

	∀𝑖∈𝑁̅,∀𝑡∈𝛤 
	∀𝑖∈𝑁̅,∀𝑡∈𝛤 

	TD
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	LI
	Lbl
	(10)   




	ℎ̅𝑗∙𝜑𝑗𝑡≤𝑣𝑖,𝑗𝑡 
	ℎ̅𝑗∙𝜑𝑗𝑡≤𝑣𝑖,𝑗𝑡 
	ℎ̅𝑗∙𝜑𝑗𝑡≤𝑣𝑖,𝑗𝑡 

	∀𝑖∈𝑁,∀𝑗∈𝑁̿,∀(𝑖,𝑗)∈𝐴̌,∀𝑡∈𝛤 
	∀𝑖∈𝑁,∀𝑗∈𝑁̿,∀(𝑖,𝑗)∈𝐴̌,∀𝑡∈𝛤 
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	(11)   




	𝜈𝑖,𝑗𝑡≤𝑛𝑗∙𝜑𝑗𝑡 
	𝜈𝑖,𝑗𝑡≤𝑛𝑗∙𝜑𝑗𝑡 
	𝜈𝑖,𝑗𝑡≤𝑛𝑗∙𝜑𝑗𝑡 

	∀𝑖∈𝑁,∀𝑗∈𝑁̿,∀(𝑖,𝑗)∈𝐴̌,∀𝑡∈𝛤 
	∀𝑖∈𝑁,∀𝑗∈𝑁̿,∀(𝑖,𝑗)∈𝐴̌,∀𝑡∈𝛤 

	TD
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	𝜈𝑖,𝑗𝑡≤𝑛𝑗∙𝜃𝑗𝑡 
	𝜈𝑖,𝑗𝑡≤𝑛𝑗∙𝜃𝑗𝑡 
	𝜈𝑖,𝑗𝑡≤𝑛𝑗∙𝜃𝑗𝑡 
	𝜈𝑖,𝑗𝑡≤𝑛𝑗∙𝜃𝑗𝑡 

	∀𝑖∈𝑁,∀𝑗∈𝑁̅,∀(𝑖,𝑗)∈𝐴̌,∀𝑡∈𝛤 
	∀𝑖∈𝑁,∀𝑗∈𝑁̅,∀(𝑖,𝑗)∈𝐴̌,∀𝑡∈𝛤 
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	𝜃𝑖𝑡∈{0,1} 
	𝜃𝑖𝑡∈{0,1} 
	𝜃𝑖𝑡∈{0,1} 

	∀𝑖∈𝑁̅,∀𝑡∈𝛤 
	∀𝑖∈𝑁̅,∀𝑡∈𝛤 

	TD
	L
	LI
	Lbl
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	𝜑𝑖𝑡∈{0,1} 
	𝜑𝑖𝑡∈{0,1} 
	𝜑𝑖𝑡∈{0,1} 

	∀𝑖∈𝑁̿,∀𝑡∈𝛤 
	∀𝑖∈𝑁̿,∀𝑡∈𝛤 
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	Lower-level model 
	𝑓𝑖𝑗𝑤,𝑡,1∙(𝑐𝑖𝑗𝑡+𝜇𝑖𝑤,𝑡,1−𝜇𝑗𝑤,𝑡,1)=0 
	𝑓𝑖𝑗𝑤,𝑡,1∙(𝑐𝑖𝑗𝑡+𝜇𝑖𝑤,𝑡,1−𝜇𝑗𝑤,𝑡,1)=0 
	𝑓𝑖𝑗𝑤,𝑡,1∙(𝑐𝑖𝑗𝑡+𝜇𝑖𝑤,𝑡,1−𝜇𝑗𝑤,𝑡,1)=0 
	𝑓𝑖𝑗𝑤,𝑡,1∙(𝑐𝑖𝑗𝑡+𝜇𝑖𝑤,𝑡,1−𝜇𝑗𝑤,𝑡,1)=0 

	∀(𝑖,𝑗)∈𝐴,∀𝑤,∀𝑡 
	∀(𝑖,𝑗)∈𝐴,∀𝑤,∀𝑡 

	(16)
	(16)
	(16)
	(16)
	   




	𝑐𝑖𝑗𝑡+𝜇𝑖𝑤,𝑡,1−𝜇𝑗𝑤,𝑡,1≥0 
	𝑐𝑖𝑗𝑡+𝜇𝑖𝑤,𝑡,1−𝜇𝑗𝑤,𝑡,1≥0 
	𝑐𝑖𝑗𝑡+𝜇𝑖𝑤,𝑡,1−𝜇𝑗𝑤,𝑡,1≥0 

	∀(𝑖,𝑗)∈𝐴,∀𝑤,∀𝑡 
	∀(𝑖,𝑗)∈𝐴,∀𝑤,∀𝑡 

	(17)
	(17)
	(17)
	(17)
	   




	𝑓𝑖𝑗𝑤,𝑡,𝑚∙(𝑐𝑖𝑗𝑡+𝜁𝑖𝑗𝑤,𝑡,𝑚+𝜇𝑖𝑤,𝑡,𝑚−𝜇𝑗𝑤,𝑡,𝑚)=0 
	𝑓𝑖𝑗𝑤,𝑡,𝑚∙(𝑐𝑖𝑗𝑡+𝜁𝑖𝑗𝑤,𝑡,𝑚+𝜇𝑖𝑤,𝑡,𝑚−𝜇𝑗𝑤,𝑡,𝑚)=0 
	𝑓𝑖𝑗𝑤,𝑡,𝑚∙(𝑐𝑖𝑗𝑡+𝜁𝑖𝑗𝑤,𝑡,𝑚+𝜇𝑖𝑤,𝑡,𝑚−𝜇𝑗𝑤,𝑡,𝑚)=0 

	∀(𝑖,𝑗)∈𝐴,∀𝑤,∀𝑡,𝑚>1 
	∀(𝑖,𝑗)∈𝐴,∀𝑤,∀𝑡,𝑚>1 

	(18)
	(18)
	(18)
	(18)
	   




	𝑐𝑖𝑗𝑡+𝜁𝑖𝑗𝑤,𝑡,𝑚+𝜇𝑖𝑤,𝑡,𝑚−𝜇𝑗𝑤,𝑡,𝑚≥0 
	𝑐𝑖𝑗𝑡+𝜁𝑖𝑗𝑤,𝑡,𝑚+𝜇𝑖𝑤,𝑡,𝑚−𝜇𝑗𝑤,𝑡,𝑚≥0 
	𝑐𝑖𝑗𝑡+𝜁𝑖𝑗𝑤,𝑡,𝑚+𝜇𝑖𝑤,𝑡,𝑚−𝜇𝑗𝑤,𝑡,𝑚≥0 

	∀(𝑖,𝑗)∈𝐴,∀𝑤,∀𝑡,𝑚>1 
	∀(𝑖,𝑗)∈𝐴,∀𝑤,∀𝑡,𝑚>1 

	(19)
	(19)
	(19)
	(19)
	   




	𝑓𝑖𝑗𝑤,𝑡,𝑚≤Λ 𝑒𝑖𝑗𝑤,𝑡,𝑚 
	𝑓𝑖𝑗𝑤,𝑡,𝑚≤Λ 𝑒𝑖𝑗𝑤,𝑡,𝑚 
	𝑓𝑖𝑗𝑤,𝑡,𝑚≤Λ 𝑒𝑖𝑗𝑤,𝑡,𝑚 

	∀(𝑖,𝑗)∈𝐴,∀𝑤,∀𝑡,𝑚>1 
	∀(𝑖,𝑗)∈𝐴,∀𝑤,∀𝑡,𝑚>1 

	(20)
	(20)
	(20)
	(20)
	   




	𝜁𝑖𝑗𝑤,𝑡,𝑚≤Λ (1−𝑒𝑖𝑗𝑤,𝑡,𝑚) 
	𝜁𝑖𝑗𝑤,𝑡,𝑚≤Λ (1−𝑒𝑖𝑗𝑤,𝑡,𝑚) 
	𝜁𝑖𝑗𝑤,𝑡,𝑚≤Λ (1−𝑒𝑖𝑗𝑤,𝑡,𝑚) 

	∀(𝑖,𝑗)∈𝐴,∀𝑤,∀𝑡,𝑚>1 
	∀(𝑖,𝑗)∈𝐴,∀𝑤,∀𝑡,𝑚>1 

	(21)
	(21)
	(21)
	(21)
	   




	𝜇𝑠𝑤,𝑡,𝑚=0 
	𝜇𝑠𝑤,𝑡,𝑚=0 
	𝜇𝑠𝑤,𝑡,𝑚=0 

	∀𝑤,∀𝑠,∀𝑡,∀𝑚 
	∀𝑤,∀𝑠,∀𝑡,∀𝑚 

	(22)
	(22)
	(22)
	(22)
	   




	𝑣𝑖,𝑗𝑡=∑∑𝑓𝑖𝑗𝑤,𝑡,𝑚𝑚∈𝑀𝑤∈𝑊 
	𝑣𝑖,𝑗𝑡=∑∑𝑓𝑖𝑗𝑤,𝑡,𝑚𝑚∈𝑀𝑤∈𝑊 
	𝑣𝑖,𝑗𝑡=∑∑𝑓𝑖𝑗𝑤,𝑡,𝑚𝑚∈𝑀𝑤∈𝑊 

	∀𝑡 
	∀𝑡 

	(23)
	(23)
	(23)
	(23)
	   




	∑𝑓𝑗𝑖𝑤,𝑡,𝑚𝑗:(𝑗,𝑖)∈𝐴−∑𝑓𝑖𝑗𝑤,𝑡,𝑚𝑗:(𝑖,𝑗)∈𝐴=𝑞𝑖𝑤,𝑡,𝑚 
	∑𝑓𝑗𝑖𝑤,𝑡,𝑚𝑗:(𝑗,𝑖)∈𝐴−∑𝑓𝑖𝑗𝑤,𝑡,𝑚𝑗:(𝑖,𝑗)∈𝐴=𝑞𝑖𝑤,𝑡,𝑚 
	∑𝑓𝑗𝑖𝑤,𝑡,𝑚𝑗:(𝑗,𝑖)∈𝐴−∑𝑓𝑖𝑗𝑤,𝑡,𝑚𝑗:(𝑖,𝑗)∈𝐴=𝑞𝑖𝑤,𝑡,𝑚 

	∀𝑤,∀𝑖,∀𝑡,∀𝑚 
	∀𝑤,∀𝑖,∀𝑡,∀𝑚 

	(24)
	(24)
	(24)
	(24)
	   




	𝜁𝑖𝑗𝑤,𝑡,𝑚 and 𝑓𝑖𝑗𝑤,𝑡,𝑚≥0  
	𝜁𝑖𝑗𝑤,𝑡,𝑚 and 𝑓𝑖𝑗𝑤,𝑡,𝑚≥0  
	𝜁𝑖𝑗𝑤,𝑡,𝑚 and 𝑓𝑖𝑗𝑤,𝑡,𝑚≥0  

	∀(𝑖,𝑗),∀𝑤,∀𝑡,∀𝑚 
	∀(𝑖,𝑗),∀𝑤,∀𝑡,∀𝑚 

	(25)
	(25)
	(25)
	(25)
	   





	The goal of the presented model is to minimize the worst-case sum of system travel time (Η1) and the total penalty due to unused charging station capacity (Η2; Equation ). Equation (3) calculates the total travel delay of ICEV and EV travelers. Equation (4) calculates the total unused electric charging stations and refueling stations. Constraints  ensure that refueling stations exist in the first period and can be used by ICEVs. Constraints  state that if the refueling station of node 𝑖 stops working in pe
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	The second body of the model (–) addresses the route choice behavior of travelers. Constraints – are the UE conditions for ICEV users, which ensure that if ICEV users of each O-D pair use link (𝑖,𝑗), it belongs to the path between that O-D pair with minimum travel cost. Similarly, constraints – are the UE conditions for EV users. Constraint  ensures that if link (𝑖,𝑗) does not belong to the feasible path between an O-D pair, the flow of EVs is zero. Similarly, constraint  imposes an excessive travel cos
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	An important component of the above formulation (–) is the feasible path of EVs (𝑒𝑖𝑗𝑤,𝑚,𝑡). Considering the heterogeneous driving range of ICEVs and EVs, the feasible paths of EVs (𝑒𝑖𝑗𝑤,𝑚,𝑡) are derived as a set of mixed-integer linear programs (equations –).  
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	Constraints  and  calculate the distance that travelers traveled from the last-visited refueling stations (for 𝑚=1) or charging station (for 𝑚>1) after visiting node 𝑗 and just before visiting node 𝑖. Constraints  ensure that the traveled distance of vehicles (𝑢𝑗𝑤,𝑚,𝑡) is less than the driving range in period 𝑡 (𝑅𝑚,𝑡). Constraints  and  ensure that if a charging station is not located at node 𝑖, the traveled distances from the last-visited charging station just before visiting node 𝑖 (𝑢𝑖𝑤,
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	operates at node 𝑖, then 𝑢′𝑖𝑤,𝑡 is equal to zero (constraint (33)). Constraints  and  ensure that (𝑢𝑖𝑤,𝑡) and (𝑢′𝑖𝑤,𝑡) are zero at the origin of the trips. Constraint  calculates the total volume of EVs that recharge at station 𝑖 and ensures that this not exceed the capacity of that charging station. Constraint  ensures that the served ICEVs do not exceed the capacity of the refueling stations. Especially, it ensures that when a refueling station is decommissioned, it does not serve ICEVs anym
	(34)
	(34)

	(35)
	(35)

	(36)
	(36)

	(37)
	(37)

	(38)
	(38)

	(39)
	(39)


	3.3 Solution Algorithm 
	The proposed MMP1 (equations –) contains two types of binary variables and is classified as a mixed-integer problem. It cannot be solved in polynomial time and, therefore, is described as non-deterministic polynomial hard (NP-hard). Many solution algorithms are used to solve NO-hard problems in the literature (Miralinaghi, et al., 2017a; Miralinaghi, et al., 2017b; Pourgholamali et al., 2023; Labi et al., 2023; Seilabi et al., 2022a; Seilabi et al., 2022b). This study uses the cutting-plane scheme to solve 
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	where the superscript (∙)𝑞 denotes the variables that are associated with a specific travel demand uncertainty vector 𝑞∈𝑄. Although the number of feasible scenarios for the travel demand of each vehicle class 𝑚 of O-D pair (𝑟,𝑠) in period 𝑡 is particularly small, the number of vectors in the travel demand uncertainty set (𝑄) is generally very large. In MMP2, equations –, which present the UE conditions, need to be written for each 𝑞∈𝑄. To prevent presenting repetitive equations, equation  represen
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	(3)
	(3)

	(4)
	(4)

	(11)
	(11)

	(13)
	(13)

	(16)
	(16)

	(39)
	(39)


	 Based on the developed subproblems, a solution algorithm consists of eight main steps. To begin, the feasible paths of ICEVs and EVs are found based on the available refueling and charging stations (Step 1). The feasible paths are used to capture the route choice of travelers. In Step 2, the uncertain travel demand set is initialized by selecting a travel demand set (or vector). In this step, the nominal travel demand is selected and added to the uncertain travel demand set. Next, an optimal plan for const
	(Step 8). If not, it goes to Step 7 and adds the solution of MMP3 to the worst-case travel demand scenario. Figure 3.2 presents a simplified flowchart of the implemented solution algorithm.  
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	Figure 3.2. Flowchart of the implemented solution algorithm  
	 NUMERICAL EXPERIMENTS 
	4.1 Case Study 
	This section presents the results of numerical experiments using the well-known Sioux Falls city road network (Figure 4.1), which has 24 nodes and 76 links. The road agency seeks the optimal timeline for constructing new EV charging stations and decommissioning existing refueling stations over the planning horizon.  
	 
	 
	Figure
	Figure 4.1. Sioux Falls network of refueling and charging stations 
	The horizon is assumed to be equal to 18 years, with 6 time periods of 3-year duration each. The characteristics of this network have been modified to better mimic intercity travel compared to the characteristics proposed by LeBlanc et al. (1975). The link characteristics (travel times and lengths) and the aggregate peak-hour travel demand of each origin-destination (O-D) pair in period 1 are listed in Table 4.1 and Figure 4.2, respectively.  
	 
	Figure
	Figure 4.2. Aggregate travel demand for each origin-destination (O-D) pair in period 1 
	4.2 Problem Setting 
	The travel demand uncertainty set for O-D pair 𝑤 and vehicle class 𝑚 in time period 𝑡 consists of four demand sets: (1) travel demand scenario at peak hour, (2) low travel demand scenario, (3) medium travel demand scenario, and (4) high travel demand scenario. Travel demand scenarios 2 to 4 are derived by multiplying travel demand scenario 1, as the benchmark, with random parameters that are generated based on the uniform distribution. The domain of the low travel demand scenario is [0.95, 1] in period 1
	  
	 
	Table 4.1. Link characteristics of Sioux Falls network 
	Link No. 
	Link No. 
	Link No. 
	Link No. 

	From 
	From 

	To 
	To 

	Travel Time (min) 
	Travel Time (min) 

	Length (mile) 
	Length (mile) 

	 
	 

	Link No. 
	Link No. 

	From 
	From 

	To 
	To 

	Travel Time (min) 
	Travel Time (min) 

	Length (mile) 
	Length (mile) 


	1 
	1 
	1 

	1 
	1 

	2 
	2 

	60.34 
	60.34 

	71.52 
	71.52 

	 
	 

	39 
	39 

	13 
	13 

	24 
	24 

	37.67 
	37.67 

	44.64 
	44.64 


	2 
	2 
	2 

	1 
	1 

	3 
	3 

	43.94 
	43.94 

	52.08 
	52.08 

	 
	 

	40 
	40 

	14 
	14 

	11 
	11 

	44.75 
	44.75 

	53.04 
	53.04 


	3 
	3 
	3 

	2 
	2 

	1 
	1 

	60.34 
	60.34 

	71.52 
	71.52 

	 
	 

	41 
	41 

	14 
	14 

	15 
	15 

	45.77 
	45.77 

	54.24 
	54.24 


	4 
	4 
	4 

	2 
	2 

	6 
	6 

	52.35 
	52.35 

	62.04 
	62.04 

	 
	 

	42 
	42 

	14 
	14 

	23 
	23 

	43.03 
	43.03 

	51.00 
	51.00 


	5 
	5 
	5 

	3 
	3 

	1 
	1 

	43.94 
	43.94 

	52.08 
	52.08 

	 
	 

	43 
	43 

	15 
	15 

	10 
	10 

	59.43 
	59.43 

	70.44 
	70.44 


	6 
	6 
	6 

	3 
	3 

	4 
	4 

	43.64 
	43.64 

	51.72 
	51.72 

	 
	 

	44 
	44 

	15 
	15 

	14 
	14 

	45.77 
	45.77 

	54.24 
	54.24 


	7 
	7 
	7 

	3 
	3 

	12 
	12 

	41.92 
	41.92 

	49.68 
	49.68 

	 
	 

	45 
	45 

	15 
	15 

	19 
	19 

	35.44 
	35.44 

	42.00 
	42.00 


	8 
	8 
	8 

	4 
	4 

	3 
	3 

	43.64 
	43.64 

	51.72 
	51.72 

	 
	 

	46 
	46 

	15 
	15 

	22 
	22 

	35.44 
	35.44 

	42.00 
	42.00 


	9 
	9 
	9 

	4 
	4 

	5 
	5 

	21.87 
	21.87 

	25.92 
	25.92 

	 
	 

	47 
	47 

	16 
	16 

	8 
	8 

	48.80 
	48.80 

	57.84 
	57.84 


	10 
	10 
	10 

	4 
	4 

	11 
	11 

	65.41 
	65.41 

	77.52 
	77.52 

	 
	 

	48 
	48 

	16 
	16 

	10 
	10 

	45.56 
	45.56 

	54.00 
	54.00 


	11 
	11 
	11 

	5 
	5 

	4 
	4 

	21.87 
	21.87 

	25.92 
	25.92 

	 
	 

	49 
	49 

	16 
	16 

	17 
	17 

	16.91 
	16.91 

	20.04 
	20.04 


	12 
	12 
	12 

	5 
	5 

	6 
	6 

	42.22 
	42.22 

	50.04 
	50.04 

	 
	 

	50 
	50 

	16 
	16 

	18 
	18 

	27.24 
	27.24 

	32.28 
	32.28 


	13 
	13 
	13 

	5 
	5 

	9 
	9 

	50.93 
	50.93 

	60.36 
	60.36 

	 
	 

	51 
	51 

	17 
	17 

	10 
	10 

	81.41 
	81.41 

	96.48 
	96.48 


	14 
	14 
	14 

	6 
	6 

	2 
	2 

	52.35 
	52.35 

	62.04 
	62.04 

	 
	 

	52 
	52 

	17 
	17 

	16 
	16 

	16.91 
	16.91 

	20.04 
	20.04 


	15 
	15 
	15 

	6 
	6 

	5 
	5 

	42.22 
	42.22 

	50.04 
	50.04 

	 
	 

	53 
	53 

	17 
	17 

	19 
	19 

	23.39 
	23.39 

	27.72 
	27.72 


	16 
	16 
	16 

	6 
	6 

	8 
	8 

	21.97 
	21.97 

	26.04 
	26.04 

	 
	 

	54 
	54 

	18 
	18 

	7 
	7 

	22.07 
	22.07 

	26.16 
	26.16 


	17 
	17 
	17 

	7 
	7 

	8 
	8 

	25.31 
	25.31 

	30.00 
	30.00 

	 
	 

	55 
	55 

	18 
	18 

	16 
	16 

	27.24 
	27.24 

	32.28 
	32.28 


	18 
	18 
	18 

	7 
	7 

	18 
	18 

	22.07 
	22.07 

	26.16 
	26.16 

	 
	 

	56 
	56 

	18 
	18 

	20 
	20 

	45.16 
	45.16 

	53.52 
	53.52 


	19 
	19 
	19 

	8 
	8 

	6 
	6 

	21.97 
	21.97 

	26.04 
	26.04 

	 
	 

	57 
	57 

	19 
	19 

	15 
	15 

	35.44 
	35.44 

	42.00 
	42.00 


	20 
	20 
	20 

	8 
	8 

	7 
	7 

	25.31 
	25.31 

	30.00 
	30.00 

	 
	 

	58 
	58 

	19 
	19 

	17 
	17 

	23.39 
	23.39 

	27.72 
	27.72 


	21 
	21 
	21 

	8 
	8 

	9 
	9 

	97.30 
	97.30 

	115.32 
	115.32 

	 
	 

	59 
	59 

	19 
	19 

	20 
	20 

	40.40 
	40.40 

	47.88 
	47.88 


	22 
	22 
	22 

	8 
	8 

	16 
	16 

	48.80 
	48.80 

	57.84 
	57.84 

	 
	 

	60 
	60 

	20 
	20 

	18 
	18 

	45.16 
	45.16 

	53.52 
	53.52 


	23 
	23 
	23 

	9 
	9 

	5 
	5 

	50.93 
	50.93 

	60.36 
	60.36 

	 
	 

	61 
	61 

	20 
	20 

	19 
	19 

	40.40 
	40.40 

	47.88 
	47.88 


	24 
	24 
	24 

	9 
	9 

	8 
	8 

	97.30 
	97.30 

	115.32 
	115.32 

	 
	 

	62 
	62 

	20 
	20 

	21 
	21 

	57.92 
	57.92 

	68.64 
	68.64 


	25 
	25 
	25 

	9 
	9 

	10 
	10 

	27.84 
	27.84 

	33.00 
	33.00 

	 
	 

	63 
	63 

	20 
	20 

	22 
	22 

	47.69 
	47.69 

	56.52 
	56.52 


	26 
	26 
	26 

	10 
	10 

	9 
	9 

	27.84 
	27.84 

	33.00 
	33.00 

	 
	 

	64 
	64 

	21 
	21 

	20 
	20 

	57.92 
	57.92 

	68.64 
	68.64 


	27 
	27 
	27 

	10 
	10 

	11 
	11 

	50.62 
	50.62 

	60.00 
	60.00 

	 
	 

	65 
	65 

	21 
	21 

	22 
	22 

	16.91 
	16.91 

	20.04 
	20.04 


	28 
	28 
	28 

	10 
	10 

	15 
	15 

	59.43 
	59.43 

	70.44 
	70.44 

	 
	 

	66 
	66 

	21 
	21 

	24 
	24 

	33.31 
	33.31 

	39.48 
	39.48 


	29 
	29 
	29 

	10 
	10 

	16 
	16 

	45.56 
	45.56 

	54.00 
	54.00 

	 
	 

	67 
	67 

	22 
	22 

	15 
	15 

	35.44 
	35.44 

	42.00 
	42.00 


	30 
	30 
	30 

	10 
	10 

	17 
	17 

	81.41 
	81.41 

	96.48 
	96.48 

	 
	 

	68 
	68 

	22 
	22 

	20 
	20 

	47.69 
	47.69 

	56.52 
	56.52 


	31 
	31 
	31 

	11 
	11 

	4 
	4 

	65.41 
	65.41 

	77.52 
	77.52 

	 
	 

	69 
	69 

	22 
	22 

	21 
	21 

	16.91 
	16.91 

	20.04 
	20.04 


	32 
	32 
	32 

	11 
	11 

	10 
	10 

	50.62 
	50.62 

	60.00 
	60.00 

	 
	 

	70 
	70 

	22 
	22 

	23 
	23 

	40.50 
	40.50 

	48.00 
	48.00 


	33 
	33 
	33 

	11 
	11 

	12 
	12 

	65.41 
	65.41 

	77.52 
	77.52 

	 
	 

	71 
	71 

	23 
	23 

	14 
	14 

	43.03 
	43.03 

	51.00 
	51.00 


	34 
	34 
	34 

	11 
	11 

	14 
	14 

	44.75 
	44.75 

	53.04 
	53.04 

	 
	 

	72 
	72 

	23 
	23 

	22 
	22 

	40.50 
	40.50 

	48.00 
	48.00 


	35 
	35 
	35 

	12 
	12 

	3 
	3 

	41.92 
	41.92 

	49.68 
	49.68 

	 
	 

	73 
	73 

	23 
	23 

	24 
	24 

	19.04 
	19.04 

	22.56 
	22.56 


	36 
	36 
	36 

	12 
	12 

	11 
	11 

	65.41 
	65.41 

	77.52 
	77.52 

	 
	 

	74 
	74 

	24 
	24 

	13 
	13 

	37.67 
	37.67 

	44.64 
	44.64 


	37 
	37 
	37 

	12 
	12 

	13 
	13 

	30.17 
	30.17 

	35.76 
	35.76 

	 
	 

	75 
	75 

	24 
	24 

	21 
	21 

	33.31 
	33.31 

	39.48 
	39.48 


	38 
	38 
	38 

	13 
	13 

	12 
	12 

	30.17 
	30.17 

	35.76 
	35.76 

	 
	 

	76 
	76 

	24 
	24 

	23 
	23 

	19.04 
	19.04 

	22.56 
	22.56 



	 
	 
	It is assumed that the network has 10 existing refueling stations located at nodes 3, 5, 7, 12, 17, 21, and 23 and at links (1,2), (10,11), and (18,20). There are also 5 existing charging stations at nodes 5, 12, 19, and 21 and at link (1,2). Figure 4.1 illustrates 13 candidate locations for constructing new charging stations, which are nodes 2, 3, 4, 7, 9, 13, 14, 15, 17, 18, and 23 and links (10,11) and (18,20). The construction costs of new charging stations are assumed to be identical for all candidate 
	In this case study, equal weights for the two considered objective criteria in the objective function (i.e., 𝜙1=𝜙2=1) are assumed. The constant interest rate (𝜋) for each period during the entire planning horizon is assumed to be equal to 5 percent. Hence, 𝛥𝑡 is equal to 11.05𝑡−1. Furthermore, 𝜅 equals 26,280 (that is, 24×365×3) to convert the hourly-based costs to the basis of each period duration (i.e., 3 years). The conversion factor presents the system costs in a way that is more representative o
	4.3
	4.3

	4.4
	4.4


	4.3 Comparison of the Robust and Deterministic Schemes 
	In this section, the performance of robust planning is investigated. To do this, the optimal long-term plan of the proposed robust framework, which is called the “robust scheme,” is compared to its counterpart, the “deterministic scheme.” The deterministic scheme is the optimal long-term plan of the proposed framework, except the only deterministic values of demand are assumed to be travel demand (therefore, the travel demand uncertainty set contains only one travel demand set, which is the deterministic tr
	First, the obtained locations and decommissioning timelines under deterministic and robust schemes are compared. Figure 4.3 shows the optimal location of constructed charging stations and decommissioned refueling stations. Under the robust scheme, there are three additional charging stations compared to the deterministic scheme during the planning horizon. This is due to the higher conservatism of the road agencies, who consider the worst-case travel demand scenario in the optimal design, in robust scheme. 
	Furthermore, both schemes suggest almost identical designs for decommissioning the existing refueling stations, except for period 5 (). Both schemes suggest decommissioning refueling stations located at node 23, link (10,11), node 3, and node 17 in periods 2, 3, 4, and 6. Under the deterministic scheme, the refueling station on node 12 must be decommissioned in period 5, while the robust scheme suggests decommissioning the refueling station located at link (18,20) in period 5. This similarity is due to the 
	Table 4.2
	Table 4.2


	 
	Figure
	Figure4.3. Optimal locations of constructed charging and decommissioned refueling stations
	 

	Table 4.2. Optimal decommissioning plan 
	(a) Robust scheme 
	Refueling station 
	Refueling station 
	Refueling station 
	Refueling station 

	Period 1 
	Period 1 

	Period 2 
	Period 2 

	Period 3 
	Period 3 

	Period 4 
	Period 4 

	Period 5 
	Period 5 

	Period 6 
	Period 6 


	Node 23 
	Node 23 
	Node 23 

	 
	 

	X 
	X 

	 
	 

	 
	 

	 
	 

	 
	 


	Link (10,11) 
	Link (10,11) 
	Link (10,11) 

	 
	 

	 
	 

	X 
	X 

	 
	 

	 
	 

	 
	 


	Node 3 
	Node 3 
	Node 3 

	 
	 

	 
	 

	 
	 

	X 
	X 

	 
	 

	 
	 


	Link (18,20) 
	Link (18,20) 
	Link (18,20) 

	 
	 

	 
	 

	 
	 

	 
	 

	X 
	X 

	 
	 


	Node 17 
	Node 17 
	Node 17 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	X 
	X 



	 
	(b) Deterministic scheme 
	Refueling station 
	Refueling station 
	Refueling station 
	Refueling station 

	Period 1 
	Period 1 

	Period 2 
	Period 2 

	Period 3 
	Period 3 

	Period 4 
	Period 4 

	Period 5 
	Period 5 

	Period 6 
	Period 6 


	Node 23 
	Node 23 
	Node 23 

	 
	 

	X 
	X 

	 
	 

	 
	 

	 
	 

	 
	 


	Link (10,11) 
	Link (10,11) 
	Link (10,11) 

	 
	 

	 
	 

	X 
	X 

	 
	 

	 
	 

	 
	 


	Node 3 
	Node 3 
	Node 3 

	 
	 

	 
	 

	 
	 

	X 
	X 

	 
	 

	 
	 


	Node 12 
	Node 12 
	Node 12 

	 
	 

	 
	 

	 
	 

	 
	 

	X 
	X 

	 
	 


	Node 17 
	Node 17 
	Node 17 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	X 
	X 



	 
	Next, the performance of the deterministic and robust schemes under uncertainty in the long-term travel demand forecasts is investigated. To do this, three Monte Carlo simulations are implemented. In these analyses, 1,000 travel demand vectors for each simulation are generated based on the different distributions that use travel demand scenarios (1)–(4). The distributions for simulations 1 to 3 include (1) optimistically asymmetric distribution with higher occurrence probability (that is, 0.4) for low and p
	The relative performances of the robust and deterministic schemes in each of the three simulations are compared based on the three measures: (i) travelers’ costs, (ii) charging costs of 
	EVs, and (iii) standard deviation of travelers’ costs (). “Travelers’ costs” refers to the monetized travel time experienced by travelers. The induced delay for EV travelers due to charging their EVs at charging stations is called the “charging cost of EVs.” Overall, travelers’ costs increase from simulation 1 to simulation 3 under both robust and deterministic schemes. This is due to the increase in travel demand from simulation 1 to simulation 3. Under simulations 1–3, the robust scheme reduces average tr
	Additionally, the standard deviation of the travelers’ cost under a robust scheme is also less than or equal to that under the deterministic scheme in simulations 1–3, which demonstrates the less volatile performance of the robust scheme compared to the deterministic scheme. This is due to the more conservative approach of the road infrastructure agency under the robust scheme to plan for the worst-case travel demand scenario. A similar discussion applies to the differences between robust and deterministic 
	 
	Table 4.3. Performance of the robust and deterministic schemes in the Monte Carlo simulation 
	Simulation 
	Simulation 
	Simulation 
	Simulation 

	Measures (in million dollars) 
	Measures (in million dollars) 

	Robust Scheme 
	Robust Scheme 

	Deterministic Scheme 
	Deterministic Scheme 


	1 
	1 
	1 

	Average travelers’ cost 
	Average travelers’ cost 

	$70,760 
	$70,760 

	$70,803 
	$70,803 


	TR
	Average charging cost of EVs 
	Average charging cost of EVs 

	$5,115 
	$5,115 

	$5,159 
	$5,159 


	TR
	Standard deviation of travelers’ cost 
	Standard deviation of travelers’ cost 

	101 
	101 

	102 
	102 


	 
	 
	 

	 
	 

	 
	 

	 
	 


	2 
	2 
	2 

	Average travelers’ cost 
	Average travelers’ cost 

	$75,135 
	$75,135 

	$75,160 
	$75,160 


	TR
	Average charging cost of EVs 
	Average charging cost of EVs 

	$5,474 
	$5,474 

	$5,498 
	$5,498 


	TR
	Standard deviation of travelers’ cost 
	Standard deviation of travelers’ cost 

	145 
	145 

	146 
	146 


	3 
	3 
	3 

	Average travelers’ cost 
	Average travelers’ cost 

	$78,821 
	$78,821 

	$78,839 
	$78,839 


	TR
	Average charging cost of EVs 
	Average charging cost of EVs 

	$5,776 
	$5,776 

	$5,795 
	$5,795 


	TR
	Standard deviation of travelers cost 
	Standard deviation of travelers cost 

	119 
	119 

	120 
	120 


	Sim1 
	Sim1 
	Sim1 

	tends to have relatively lower demand levels on average 
	tends to have relatively lower demand levels on average 

	 
	 


	Sim2 
	Sim2 
	Sim2 

	tends to have relatively medium demand levels on average 
	tends to have relatively medium demand levels on average 

	 
	 


	Sim3 
	Sim3 
	Sim3 

	tends to have relatively higher demand levels on average 
	tends to have relatively higher demand levels on average 

	 
	 


	Details of simulations are provided on pages 52 and 53. 
	Details of simulations are provided on pages 52 and 53. 
	Details of simulations are provided on pages 52 and 53. 

	 
	 



	4.4 Impacts of Construction Budget 
	Next, the impacts of the construction budget on the optimal design of electric charging infrastructure are investigated using four cases. The construction budget used in the previous analysis (Section ) is referred to as case 1, which is a base case in this analysis. The construction budget in each period for cases 2 to 4 is derived by multiplying the construction budget of case 1 by 1.5, 2, and 2.5 for each period, respectively. Therefore, the corresponding budgets for cases 2–4 are as follows: 12, 16, and
	4.3
	4.3


	 
	 
	 
	 
	 

	 
	 


	(a) Savings in total travel time 
	(a) Savings in total travel time 
	(a) Savings in total travel time 

	(b) Marginal travel time savings 
	(b) Marginal travel time savings 



	Figure
	Figure
	Figure 4.4. Effects of budget on travel time and travelers’ cost 
	 
	Besides the savings in total travel time of travelers, the effects of construction budgets on the total savings in charging costs of EVs are investigated (Figure 4.5). The effects of the construction budget on the total charging costs of EVs are similar to the discussed effects on the total travel cost of travelers. Similarly, Figure 4.5a shows that increasing the construction budget increases the saved charging costs of EVs (defined as the difference between the charging costs of EVs in a budget case and b
	 
	 
	 
	 
	 
	 

	 
	 


	(a) Total savings in charging cost 
	(a) Total savings in charging cost 
	(a) Total savings in charging cost 

	(b) Marginal savings in charging cost 
	(b) Marginal savings in charging cost 



	Figure
	Figure
	Figure 4.5. Effects of budget on charging cost of EVs 
	 
	Next, the effects of the construction budget on the unused charging station capacity are discussed. As expected, increasing the construction budget results in more charging stations in the network and, therefore, more unused charging station capacity (Figure 4.6). Although there is a penalty for the unused capacity, the number of constructed charging stations increases with the increase in the budget. This is because the decrease in travelers' costs caused by constructing more charging stations prevails ove
	 
	Figure
	Figure 4.6. Effects of budget on unused electric charging capacity 
	 
	The comparison of robust schemes under different budget cases is summarized in Table 4.4. Besides the total travel time and charging costs of EVs, the actual expenditures under the budget cases are shown in Table 4.4. Under budget cases 2 and 3, the construction expenditure increases by $3 million compared to case 1 due to the higher number of charging stations constructed. However, it decreases by $1 million under budget case 4 compared to cases 2 and 3, since more charging stations are constructed in the 
	 
	Table 4.4. Relative performance of the robust schemes with different construction budget levels  
	Sim # 
	Sim # 
	Sim # 
	Sim # 

	Measures (in million dollars) 
	Measures (in million dollars) 

	Construction Budget Case 
	Construction Budget Case 


	TR
	 
	 

	2 
	2 

	3 
	3 

	4 
	4 


	1 
	1 
	1 

	Relative construction expenditure 
	Relative construction expenditure 

	+$3 
	+$3 

	+$3 
	+$3 

	+$2 
	+$2 


	TR
	Relative travelers’ cost 
	Relative travelers’ cost 

	–$12 
	–$12 

	–$17 
	–$17 

	–$20 
	–$20 


	TR
	Relative penalty of unused charging station capacity 
	Relative penalty of unused charging station capacity 

	+$0.12 
	+$0.12 

	+$4.38 
	+$4.38 

	+$4.68 
	+$4.68 


	TR
	Relative charging cost of EVs 
	Relative charging cost of EVs 

	–$18 
	–$18 

	–$23 
	–$23 

	–$27 
	–$27 


	2 
	2 
	2 

	Relative construction expenditure 
	Relative construction expenditure 

	+$3 
	+$3 

	+$3 
	+$3 

	+$2 
	+$2 


	TR
	Relative travelers’ cost 
	Relative travelers’ cost 

	–$14 
	–$14 

	–$19 
	–$19 

	–$23 
	–$23 


	TR
	Relative penalty of unused charging station capacity  
	Relative penalty of unused charging station capacity  

	+$0.16 
	+$0.16 

	+$4.67 
	+$4.67 

	+$4.97 
	+$4.97 


	TR
	Relative charging cost of EVs 
	Relative charging cost of EVs 

	–$22 
	–$22 

	–$28 
	–$28 

	–$31 
	–$31 


	3 
	3 
	3 

	Relative construction expenditure 
	Relative construction expenditure 

	+$3 
	+$3 

	+$3 
	+$3 

	+$2 
	+$2 


	TR
	Relative travelers’ cost 
	Relative travelers’ cost 

	–$19 
	–$19 

	–$24 
	–$24 

	–$28 
	–$28 


	TR
	Relative penalty of unused capacity of charging stations 
	Relative penalty of unused capacity of charging stations 

	+$0.21 
	+$0.21 

	+$4.83 
	+$4.83 

	+$5.14 
	+$5.14 


	TR
	Relative charging cost of EVs 
	Relative charging cost of EVs 

	–$27 
	–$27 

	–$32 
	–$32 

	–$36 
	–$36 


	Sim1 
	Sim1 
	Sim1 

	tends to have relatively lower demand levels on average;  
	tends to have relatively lower demand levels on average;  


	Sim2  
	Sim2  
	Sim2  

	tends to have relatively medium demand levels on average 
	tends to have relatively medium demand levels on average 


	Sim3 
	Sim3 
	Sim3 

	tends to have relatively higher demand levels on average 
	tends to have relatively higher demand levels on average 

	 
	 

	 
	 


	Details of simulations are provided on pages 52 and 53. 
	Details of simulations are provided on pages 52 and 53. 
	Details of simulations are provided on pages 52 and 53. 

	 
	 

	 
	 



	 CONCLUDING REMARKS 
	5.1 Study Conclusion 
	This study investigated the optimal location of electric charging stations and the decommissioning of existing refueling stations in the context of intercity trips over a long-term planning horizon. The uncertainties in refueling and electric charging demand are taken into account by considering uncertainties in travel demand forecasts over a long-term planning horizon. Then, the research accounts for uncertainty in travel demand forecasts using a travel demand uncertainty set for each period. Furthermore, 
	The problem is formulated as a min-max mathematical program where the weighted sum of the worst-case (maximum) total system travel cost and the total penalty for unused charging station capacity during the planning horizon is minimized. The formulated min-max problem is considered an NP-hard problem; therefore, a cutting-plane scheme is adopted to solve the problem efficiently, where two subproblems are solved in each iteration. The first subproblem yields the optimal timeline and location for constructing 
	The problem is applied to the Sioux Falls network. It is assumed that for this network, the road infrastructure agency seeks to determine the optimal location and timeline for constructing new electric charging stations and decommissioning existing refueling stations. It is shown that, due to the higher conservatism of the road infrastructure agency under the robust scheme, a higher number of charging stations needs to be constructed compared to the deterministic scheme. Further, under the robust scheme, ne
	Three sets of Monte Carlo simulations were carried out to assess the performance of a robust scheme compared to its deterministic counterpart. The results of the computational experiments illustrate that the proposed robust scheme outperforms the deterministic scheme based on various criteria such as travelers’ costs, charging cost of EVs, construction cost, and total cost. In particular, while the deterministic scheme cannot satisfy any of the simulation instances generated based on the uniform and pessimi
	The framework presented for constructing electric charging stations over a long-term planning horizon can provide guidance to road agencies in their long-term planning and budgeting functions. This is important in the current era where these agencies continue to seek knowledge on how they can best prepare the existing roadway infrastructure to support a new era of transformative transportation technologies, including automated, connected, and electric vehicles. Such guidance can also help mitigate the inher
	5.2 Study Limitations and Future Work 
	This research can be extended in several directions. First, although our study considers the uncertainty in travel demand, there are other sources of uncertainty that should be considered in electric charging station planning, especially in long-term planning. For example, the uncertainty in the market penetration of different classes of EVs has not been assessed. An interesting research direction would be to investigate the market penetration rate of EVs as a stochastic function of charging station availab
	Third, the emergence of connected and autonomous vehicles (CAVs), which are expected to serve as EVs, could impose high levels of uncertainty on the charging behavior of EV-using travelers. Hence, another future research direction is to incorporate the charging behavior of CAVs into the robust design of charging stations. Seilabi et al. (2022c) and Pourgholamali et al. (2023) discussed the sibling relationships including the synergies between CAVs and EVs. Fourth, this thesis assumes fast-charging stations 
	Other prospective directions for future research on EV charging infrastructure investment planning include consideration of emissions (McLaren et al., 2016; Miralinaghi et al., 2020), which can be further reduced with enhanced planning that promotes EV market growth and ICEV market decline; alternative charging fee revenue impacts from EV charging fee policies and associated revenues (Konstantinou et al., 2022); regional-scale location planning of EV charging stations (Chen et al., 2023); and the synergies 
	In addition, the present study focuses on intercity trips; the link travel times are assumed to be constant, and thus, prospective future studies could address intracity trips and duly consider urban traffic congestion. Finally, this study did not consider the time EV users spend waiting at charging stations when there is no available charging spot, and it assumed that EV users simply pass that charging station and drive to another one. However, EV users may wait at charging stations until a charging spot b
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